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ABSTRACT

We show how to formulate many continuous time-and-space search problems as gen-

eralized optimal control problems, where multiple searchers look for multiple targets.

Specifically, we formulate problems in which we minimize the probability that all of

the searchers fail to detect any of the targets during the planning horizon, and prob-

lems in which we maximize the expected number of targets detected. We construct

discretization schemes to solve these continuous time-and-space problems, and prove

that they are consistent approximations. Consistency ensures that global minimiz-

ers, local minimizers, and stationary points of the discretized problems converge to

global minimizers, local minimizers, and stationary points, respectively, of the orig-

inal problems. We also investigate the rate of convergence of algorithms based on

discretization schemes as a computing budget tends to infinity. We provide numer-

ical results to show that our discretization schemes are computationally tractable,

including examples with three searchers and ten targets. We develop three heuris-

tics for real-time search planning, one based on our discretization schemes, and two

based on polynomial fitting methods, and compare the three methods to determine

which solution technique would be best suited for use onboard unmanned platforms

for automatic route generation for search missions.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



TABLE OF CONTENTS

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. MOTIVATION AND BACKGROUND . . . . . . . . . . . . . . 1

B. SCOPE OF DISSERTATION . . . . . . . . . . . . . . . . . . . 2

C. LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . 4

D. CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 7

E. ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. SITUATIONAL DESCRIPTION AND PROBLEM FORMULA-

TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A. COORDINATED TARGETS . . . . . . . . . . . . . . . . . . . 13

B. INDEPENDENT TARGETS . . . . . . . . . . . . . . . . . . . . 15

C. TARGET MOTION MODEL . . . . . . . . . . . . . . . . . . . 17

D. GENERALIZED OPTIMAL CONTROL PROBLEMS . . . . . 19

III. CONSISTENT APPROXIMATIONS . . . . . . . . . . . . . . . . 23

A. CONTROL INPUT . . . . . . . . . . . . . . . . . . . . . . . . . 23

B. COORDINATED TARGETS . . . . . . . . . . . . . . . . . . . 25

1. Information State and Optimal Control Problems . . . . 25

2. Optimality Conditions . . . . . . . . . . . . . . . . . . . 27

3. Consistent Approximations . . . . . . . . . . . . . . . . . 34

C. INDEPENDENT TARGETS . . . . . . . . . . . . . . . . . . . . 64

1. Information State and Optimal Control Problems . . . . 65

2. Optimality Conditions . . . . . . . . . . . . . . . . . . . 67

3. Consistent Approximations . . . . . . . . . . . . . . . . . 71

IV. RATE OF CONVERGENCE ANALYSIS . . . . . . . . . . . . . 87

A. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 87

B. TERMINOLOGY AND ASSUMPTIONS . . . . . . . . . . . . . 90

C. RATE ANALYSIS FOR CLASSES OF ALGORITHMS . . . . . 95

vii



1. Finite Optimization Algorithm . . . . . . . . . . . . . . . 96

2. Superlinear Optimization Algorithm . . . . . . . . . . . . 100

3. Linear Optimization Algorithm . . . . . . . . . . . . . . 104

4. Sublinear Rate of Convergence . . . . . . . . . . . . . . . 107

D. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 113

V. ALGORITHMS AND NUMERICAL RESULTS . . . . . . . . . 117

A. IMPLEMENTABLE ALGORITHMS . . . . . . . . . . . . . . . 117

B. NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . 124

1. Fixed Discretization Schemes . . . . . . . . . . . . . . . . 124

2. Adaptive Discretization Schemes . . . . . . . . . . . . . . 136

3. Real-Time Methods . . . . . . . . . . . . . . . . . . . . . 141

VI. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . 155

A. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B. FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 157

1. Minimize Expected Time Until First Detection . . . . . . 158

2. Herding Formulation . . . . . . . . . . . . . . . . . . . . 159

VII. APPENDIX: MATHEMATICAL BACKGROUND . . . . . . . 163

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

INITIAL DISTRIBUTION LIST . . . . . . . . . . . . . . . . . . . . . . 171

viii



LIST OF FIGURES

1. Situational Description. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2. Regression fit for Y = aNM2 model. . . . . . . . . . . . . . . . . . . . 95
3. Full and truncated target trajectories for L = 10. Top Row Left: M =

(1, 1) Full, Top Row Middle: M = (5, 1) Full, Top Row Right: M =
(5, 2) Full. Bottom Row Left: M = (1, 1) Truncated, Bottom Row
Middle: M = (5, 1) Truncated, Bottom Row Right: M = (5, 2) Truncated.127

4. Detection Rate Function for Helo Searcher. . . . . . . . . . . . . . . . . 130
5. Detection Rate Function for DDG Searcher. . . . . . . . . . . . . . . . 131
6. Trajectories based on current CONOPS. HVU trajectory is blue. Heli-

copter trajectory is green. DDG trajectories are black. Target trajec-
tories alternate red and cyan. . . . . . . . . . . . . . . . . . . . . . . . 132

7. Trajectories based on Algorithm V.2 on ProbA. HVU trajectory is blue.
Helicopter trajectory is green. DDG trajectories are black. Target
trajectories alternate red and cyan. . . . . . . . . . . . . . . . . . . . . 133

8. Trajectories based on Algorithm V.2 on ProbB. HVU trajectory is blue.
Helicopter trajectory is green. DDG trajectories are black. Target
trajectories are magenta and red. . . . . . . . . . . . . . . . . . . . . . 134

9. Trajectories based on Algorithm V.2 on ProbC. HVU trajectory is blue.
Helicopter trajectory is green. DDG trajectories are black. Target
trajectories are red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10. Comparison of fixed and adaptive precision schemes using Algorithms
V.2 and V.4, respectively. For Sets 1 and 2 computation was terminated
between 10000 and 15000 seconds because the solution had stabilized.
Because Set 3 did not begin to stabilize until after 20000 seconds, the
horizontal axis was extended. . . . . . . . . . . . . . . . . . . . . . . . 139

11. Trajectories for ProbA based on Algorithms V.2 and V.4. Top Row
Left: Set 1 after 10339 seconds, N = 80, M = (13, 13). Top Row
Right: Set 2 after 12201 seconds, N = 120, M = (17, 17). Second Row
Left: Set 3 after 25147 seconds, N = 320, M = (25, 25). Second Row
Right: Set 4 after 29852 seconds, N = 80, M = (11, 11). Third Row
Left: Set 5 after 23152 seconds, N = 40, M = (13, 13). Third Row
Right: Set 6 after 22167 seconds, N = 80, M = (11, 11). Bottom Row
Middle: Set 7 after 39998 seconds, N = 80, M = (17, 17). . . . . . . . . 140

12. Trajectories for ProbD based on Algorithms V.2, V.5, and V.6. Left:
After 203 seconds, Algorithm V.2, N = 25, M = (11, 11) for solution,
N = 320, M = (25, 25) for plot. Middle: After 317 seconds, Algorithm
V.5, N = 320, M = (25, 25). Right: After 176 seconds, Algorithm V.6,
N = 320, M = (25, 25). . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

ix



13. Trajectories for ProbE based on Algorithms V.2, V.5, and V.6. Left:
After 53 seconds, Algorithm V.2, N = 20, M = (9, 9) for solution,
N = 320, M = (25, 25) for plot. Middle: After 66 seconds, Algorithm
V.5, N = 320, M = (25, 25). Right: After 750 seconds, Algorithm V.6,
N = 320, M = (25, 25). . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

14. Trajectories for ProbF based on Algorithms V.2, V.5, and V.6. Left:
After 39 seconds, Algorithm V.2, N = 15, M = (7, 7) for solution,
N = 320, M = (25, 25) for plot. Middle: After 68 seconds, Algorithm
V.5, N = 320, M = (25, 25). Right: After 185 seconds, Algorithm V.6,
N = 320, M = (25, 25). . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

x



LIST OF TABLES

1. Actual and fitted computational time in seconds for five iterations of
the SQP algorithm in the TOMLAB SNOPT solver. . . . . . . . . . . 94

2. Comparison for optimization algorithms. . . . . . . . . . . . . . . . . . 114
3. Comparison for numerical methods used to solve differential equations

and evaluate the spatial integration. The optimization algorithm can
be finitely, superlinearly, or linearly convergent. The last row in the
table gives the asymptotic rate of decay of the error bound assuming
“Ideal” methods are used to solve the differential equations as well as
evaluate the spatial integration. The rates given are for a superlinear
optimization algorithm with order γ ∈ (1,∞) and c ∈ (0, 1), and a
linear optimization algorithm with rate constant c̄ ∈ (0, 1). . . . . . . . 116

4. Fixed discretization problem instances. . . . . . . . . . . . . . . . . . . 124
5. Algorithm V.2 parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 124
6. Target and HVU parameter values. The target parameter values are

the same for all targets l = 1, 2, ..., L. . . . . . . . . . . . . . . . . . . . 126
7. Searcher parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . 128
8. Detection rate parameter values. . . . . . . . . . . . . . . . . . . . . . 129
9. Target and HVU parameter values. The target parameter values are

the same for targets l = 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . 132
10. Target and HVU parameter values. . . . . . . . . . . . . . . . . . . . . 135
11. Algorithm parameters used to obtain solutions for ProbA, whereK = 3,

L = 10, and i = 1, 2. For all Sets, η̄0 = (π/4, π/2, π/2,~0). . . . . . . . . 137
12. Relationship between decision vector and boundary conditions for in-

direct polynomial method. . . . . . . . . . . . . . . . . . . . . . . . . . 144
13. Real-time problem instances. For all instances, problem class is (GTP c),

K = 1, and L = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
14. Algorithm V.2 results for ProbD. . . . . . . . . . . . . . . . . . . . . . 150
15. Algorithm V.5 and V.6 results for ProbD. . . . . . . . . . . . . . . . . 150
16. Algorithm V.2 results for ProbE. . . . . . . . . . . . . . . . . . . . . . 151
17. Algorithm V.5 and V.6 results for ProbE. . . . . . . . . . . . . . . . . 151
18. Algorithm V.2 results for ProbF. . . . . . . . . . . . . . . . . . . . . . 152
19. Algorithm V.5 and V.6 results for ProbF. . . . . . . . . . . . . . . . . 152
20. Comparison of real-time methods. . . . . . . . . . . . . . . . . . . . . . 153

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



ACKNOWLEDGMENTS

I thank my advisor, Dr. Johannes Royset, for his advice, guidance, and men-

torship throughout this difficult but rewarding journey. I am also indebted to my

other committee members, Dr. Mike Ross, Dr. Isaac Kaminer, Dr. Matt Carlyle, and

Dr. Moshe Kress, both for the knowledge I gained from them as well as their thorough

and detailed review of the dissertation.

I thank my office-mates, Dave Ruth, Eng Yau Pee, Anthony Tvaryanas, Mum-

taz Karatas, Helcio Vieira Junior, Rebecca Black, Dick McGrath, Sofia Miranda, and

Jesse Pietz for their friendship and assistance throughout this process. I will miss

talking to Eng Yau about topics as wide ranging as consistent approximations to

which Wii game to buy for our kids. I will also miss learning about other countries

and cultures from Mumtaz, Helcio, and Sofia.

I also thank Dr. David Olwell, who was the first person to look out for me

upon my arrival at NPS. He let me get started on my studies and did what he could

to ensure my successful, on-time completion of the PhD program.

Finally, I want to recognize my family. I thank my wife, Stephanie, for her love

and support throughout my entire Navy career. I also thank my sons, Colin, Eric,

and Jonathan, for the sacrifices they make so that I can pursue my career objectives.

Now that we are done in Monterey, we can finally stop moving and actually live in

the same time zone as extended family.

xiii



THIS PAGE INTENTIONALLY LEFT BLANK

xiv



EXECUTIVE SUMMARY

We develop formulations for continuous time-and-space search problems as general-

ized optimal control problems, where searchers look for non-evading targets that move

in a w-dimensional area of interest, where w is a positive integer. We consider a large

class of targets, where we assume the targets follow deterministic trajectories, given

some information about their initial states or other parameters. We deal with two

categories of targets, one where the targets coordinate their actions and one where

the targets operate independently.

We refer to the generalized optimal control problem when the targets coordi-

nate their actions as the general target problem. We provide two different problem

formulations for this category. The unconstrained and constrained problems (GTP )

and (GTP c), respectively, are formulated to minimize the probability that all of the

searchers fail to detect any of the targets during the planning horizon. The uncon-

strained and constrained problems (GTP e) and (GTP c,e), respectively, are formulated

to maximize the expected number of targets detected during the planning horizon.

We refer to the generalized optimal control problem when the targets operate

independently as the independent target problem, and formuate the unconstrained

and constrained problems (ITP p) and (ITP c,p), respectively, to minimize the prob-

ability that all of the searchers fail to detect any of the targets during the planning

horizon. We also formuate the unconstrained and constrained problems (ITP e) and

(ITP c,e), respectively, to maximize the expected number of targets detected during

the planning horizon. We develop discretization schemes to solve (GTP ), (GTP c),

(GTP e), (GTP c,e), (ITP p), (ITP c,p), (ITP e), and (ITP c,e), and show that the re-

sulting finite-dimensional problems are consistent approximations to their infinite

dimensional counterparts. Consistency of approximation ensures that global mini-

mizers, local minimizers, and stationary points of the discretized problems converge

xv



to global minimizers, local minimizers, and stationary points, respectively, of the

original problems.

We consider a broad class of infinte dimensional optimization problems, which

includes (GTP ), (GTP c), (GTP e), (GTP c,e), (ITP p), (ITP c,p), (ITP e), and (ITP c,e).

We derive rate of convergence results for discretization methods used to solve prob-

lems of this class by expressing the rate of convergence in terms of computational

work. We find an upper bound for the rate of convergence by considering a finitely

convergent optimization algorithm. The finitely convergent algorithm has no opti-

mization error after a sufficiently large number of iterations, so the upper bound on

the rate of convergence represents the best possible rate. We show that both super-

linear and linear optimization algorithms are also able to attain this upper bound,

and we identify specific discretization policies that achieve this best possible rate.

We provide implementable algorithms based on our discretization schemes

along with numerical results to show that the problems (GTP c), (ITP c,p), and

(ITP c,e) are computationally tractable. For the 90 cases we consider, which include

examples with three searchers and ten targets, we are able to compute near-stationary

solutions in the range of 3 to 20 hours.

We develop three heuristics for real-time search planning, one based on our

discretization schemes, and two based on polynomial fitting methods, and compare

the three methods to determine which solution technique would be best suited for use

onboard unmanned platforms. Our numerical results indicate that our fixed-precision

discretization scheme consistently provides solutions with the best objective values

in the range of 40 to 200 seconds, and is therefore the best candidate for use as a

real-time search planning method.
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I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

The need to protect a High Value Unit (HVU), such as an aircraft carrier

or other large capital ship, from small boat attack is an important problem faced

by navies around the world. The need to protect HVUs from these types of attack

was brought into sharp focus following the attack on the USS Cole (DDG 67) in

2000. The need was further demonstrated during a U.S. Navy war game in 2002,

in which adversarial forces used swarms of small boats and aircraft to overwhelm a

U.S. invasion fleet (Kahwaji, 2006). There are also indications that smaller countries

could resort to an asymmetric strategy involving small boats if they were involved

in a naval conflict against a major naval power (Kahwaji, 2006). A key component

of any defense against small boat attack involves the search for and detection of

potential adversaries. To quote Kahwaji, “Surveillance is key: If the raiders can be

tracked as they swarm from their bases, they can be sunk with Rockeye cluster bombs

and other munitions” (Kahwaji, 2006). In order to provide the best possible defense

against small boat attack, it is clear that optimal utilization of search assets is highly

desirable.

Because the searchers’ trajectories have a significant impact on the probability

of finding the targets within a given time horizon, we would like a way to determine

the “best” trajectory for each of the searchers. This is a fundamentally difficult

problem due to the nonlinearity and nonconvexity introduced by using probability of

detection as the basic performance measure of a search platform. It becomes even

more difficult if we consider multiple searchers looking for multiple targets. Given the

increasing use of unmanned systems, such as unmanned aircraft systems (UASs) and

unmanned surface vehicles (USVs), by militaries around the world, it is clear that

there is a need for an automated method for finding optimal search trajectories given

some initial intelligence information about potential adversaries. This need serves as

1



motivation for our work. In this dissertation, we consider several search trajectory

optimization problems, including cases with multiple searchers looking for multiple

targets. The searchers could be aircraft or surface vessels with sensors designed to

detect targets that pose a threat to a HVU. We formulate these search problems as

generalized optimal control problems, in continuous time and space. We develop and

analyze algorithms based on discretization schemes to solve these problems; these

schemes are consistent approximations in the sense of Polak (1997), and the resulting

algorithms are guaranteed to converge to stationary solutions.

B. SCOPE OF DISSERTATION

We consider search trajectory optimization problems where searchers look for

nonevading targets that move in a w-dimensional area of interest, where w is a positive

integer. We limit the scope to searchers that move in continuous time and space,

according to dynamics defined by ordinary differential equations. It is worth noting

that this includes a large class of searchers, such as many manned and unmanned

aircraft as well as many manned and unmanned surface vessels. We consider a large

class of targets whose trajectories may not be continuous in time and space. While we

only consider non-evading targets, targets are allowed to move intelligently. We allow

for the case of targets that have perfect knowledge of the HVU’s position at all time,

who then determine the trajectories required to strike the HVU in minimum time. We

require that the targets’ motion is conditionally deterministic, which means that the

targets follow deterministic trajectories given realizations of random variables that

specify information about their initial states or other parameters. We assume that

the probability distribution for each random variable is known, and we consider two

situations. The first is when the random variables are dependent. This would be true,

for example, if the targets chose to attack cooperatively in a swarm configuration.

The second is when the random variables describing one target are independent of

2



the random variables describing another target. This would represent the case when

the targets attack with no level of coordination, other than the desire to strike the

same HVU.

We refer to the generalized optimal control problem when the targets coordi-

nate their actions as the general target problem. We provide two different problem

formulations for the case when the targets coordinate their actions. The first formu-

lation has corresponding problems (GTP ) and (GTP c), for the unconstrained and

control-constrained cases, respectively, whose solutions minimize the probability that

all of the searchers fail to detect any of the targets during the planning horizon. The

second formulation has corresponding problems (GTP e) and (GTP c,e), for the un-

constrained and control-constrained cases, respectively, whose solutions maximize the

expected number of targets detected during the planning horizon.

We refer to the generalized optimal control problem when the random variables

are independent across targets as the independent target problem. We also provide

two different problem formulations for the independent target category. The first

formulation has corresponding problems (ITP p) and (ITP c,p), for the unconstrained

and control-constrained cases, respectively, whose solutions minimize the probability

that all of the searchers fail to detect any of the targets during the planning horizon.

The second formulation has corresponding problems (ITP e) and (ITP c,e), for the

unconstrained and control-constrained cases, respectively, whose solutions maximize

the expected number of targets detected during the planning horizon.

Previous work on solving search problems using optimal control has focused

on deriving necessary conditions for optimality (see, for example, Hellman, 1970,

1971, 1972, and Lukka, 1977) in the tradition of Pontryagin, or sufficient conditions

for optimality (see, for example, Hibey, 1982 and Ohsumi, 1991) in the tradition of

Hamilton, Jacobi, and Bellman. Because it is unclear how to use these approaches to

develop consistent approximations that converge to solutions of the original problem,

we adopt the method developed by E. Polak (see, for example, Section 4.2 in Polak,

3



1997) to define optimality conditions. As in Section 4.3 of Polak (1997), we use Euler’s

method to approximately solve the time-discretized ordinary differential equations

governing the searcher dynamics. While it is possible to extend Polak’s method

to include Runge-Kutta integration methods (see, for example, Schwartz & Polak,

1996), doing so introduces additional complications in both theory and numerical

implementation. Because this is the first attempt to utilize Polak’s method to derive

optimality conditions and solutions for these types of generalized optimal control

problems, we use Euler’s method throughout this dissertation to approximately solve

the time-discretized ordinary differential equations.

The problems we have formulated require spatial integration in addition to in-

tegration in time. Spatial integration often requires more than one dimension, making

numerical methods used to approximate spatial integrals more computationally ex-

pensive than those related to time integration. We use Simpson’s integration rule

as a higher-order approximation to the spatial integrals due to the fact that it helps

limit approximation error, and is relatively simple to handle in both theory as well

as implementation.

C. LITERATURE SURVEY

Modern search theory traces its roots to the formation of the United States

Navy’s Operations Research Group (ORG) during World War II. During the war,

Dr. B. O. Koopman and his associates in the ORG worked on improving the way the

United States Navy conducted search during anti-submarine warfare operations (Iida

et al., 2002). Koopman (1980) is an unclassified and updated version of Koopman

(1946), which summarizes the work done by the ORG during the war. Koopman

(1980), and indeed much of the literature prior to the 1970s, focuses on stationary

targets (Benkoski et al., 1991). Research literature on moving targets can be grouped

into two categories as given in Benkoski et al. (1991):
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(i) articles which address special types of target motion, described below, that are
amenable to analysis and

(ii) articles which build on S. Brown’s work on conditioning with stationary tar-
gets (see Brown, 1980) by developing general necessary and sufficient optimality
conditions for moving-target problems.

In this dissertation, we deal with target motion that is amenable to analysis, so we

refer the interested reader to Benkoski et al. (1991) for a comprehensive survey of the

literature related to category (ii).

With respect to category (i), there are two special types of target motion that

appear in the literature. The first type deals with targets whose motion is Marko-

vian in nature, which means that the target moves in a random manner that can be

modeled by a Markov process. Benkoski et al. (1991) again provides a comprehen-

sive literature survey for Markovian target motion studies (until 1990). More recent

research (see, for example, Washburn, 1998; Lau, Huang, & Dissanayake, 2008, and

Sato & Royset, 2010) focuses on the development of specialized branch-and-bound

algorithms for finding an optimal path for the single searcher. In addition, Dell et al.

(1996) present an exact procedure (utilizing a branch-and-bound algorithm) as well

as six heuristics (local search, expected detection heuristics, genetic algorithms, and

moving time-horizon heuristic) for solving the multiple searcher problem.

The second type of special target motion in the literature is when the tar-

get’s motion is assumed to be conditionally deterministic. The term conditionally

deterministic means that the target’s trajectory depends on random variables, and

if the random variables are given, then the target’s position is known for all time.

This type of target motion has been investigated by many different researchers. In

the case of discrete time, Royset and Sato (2010) presents a convex mixed-integer

nonlinear program (MINLP) formulation for a route optimization problem involving

multiple searchers who seek to detect one or more moving targets. Royset and Sato

(2010) propose two solution approaches for the MINLP based on linearizations, one

of which involves using a cutting-plane method.
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For the case of continuous time, Stone and Richardson (1974) and Stone (1977)

derive necessary and sufficient conditions to optimally allocate search effort to maxi-

mize the probability of detection during a given planning horizon. Iida (1989) extends

the work of Stone and Richardson to include the problem of finding the optimal search

plan which minimizes the expected risk (the expected search cost minus the expected

reward). Iida (1989) also derives the closed form of the optimal search plan when the

target moves straight from a fixed point and selects its course and speed randomly.

Pursiheimo (1976) derives a necessary condition for search plans to be optimal when

the probability of detection is to be maximized and expected search time is to be

minimized for a continuous time, discrete space model. The approach in Pursiheimo

(1976) is noteworthy since it is the first to formulate the search problem for a target

with conditionally deterministic motion as an optimal control model. The results in

Pursiheimo (1976) are theoretical in nature, however, as no search plans are gener-

ated.

Following the work of Pursiheimo, there have been other formulations of the

search problem using an optimal control model. Lukka (1977) uses an optimal con-

trol model and derives a necessary condition for the optimal search plan assuming

conditionally deterministic target motion. Mangel (1981) presents an approximate

solution method, referred to as the “ray method,” that can be used in conjunction

with the necessary conditions given by Lukka (1977) to determine the optimal search

plan. Hibey (1982) and Ohsumi (1991) use an optimal control model to find sufficient

conditions for the optimal search plan assuming Markovian target motion. Ohsumi

(1991) also gives a method that can be used to numerically approximate the optimal

search trajectories, with simulation studies assuming Markovian target motion.

It should be noted that Lukka (1977), Mangel (1981), Hibey (1982), and

Ohsumi (1991) all use an indirect approach to solving the optimal control prob-

lem, employing the calculus of variations to obtain first-order optimality conditions,

which result in a boundary-value problem that must be solved. A direct method
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can also be used to solve the optimal control problem, which eliminates the need to

solve a boundary-value problem. In a direct method, a time-discretization scheme is

introduced, and the control problem is then transcribed into a nonlinear optimization

problem that can be solved using standard techniques. Wasburn (1990) employs a

direct method to construct a tactical decision program, JITTER, which is designed to

find an optimized trajectory for a submarine transiting from a given starting location

to a given terminal location, while minimizing the total acoustical energy received by

n listeners. JITTER utilizes discretization and a steepest-descent method that grad-

ually modifies a user-supplied initial trajectory into an optimized path by making

first-order corrections.

A more recent approach, given in Chung et al. (2010), uses a direct method

based on Chapter 4 of Polak (1997) to solve an optimal control problem which finds

optimized search plans for a target that moves straight down a channel at constant

speed. The results in Chung et al. (2010) indicate that the direct method based on

Chapter 4 of Polak (1997) can be used to generate optimized search plans for as many

as three searchers. Because the direct method based on Chapter 4 of Polak (1997)

demonstrates the ability to produce search plans and allows us to develop consistent

approximations, we focus on this method in the dissertation.

D. CONTRIBUTIONS

In this dissertation, we extend the work of Chung et al. (2010) in many ways.

Our target motion model is more general than that found in Chung et al. (2010), and

as a result the framework we develop allows for the formulation of many important

continuous time-and-space search problems as generalized optimal control problems.

We provide four different examples of problem formulations, namely (GTP ), (GTP e),

(ITP p), and (ITP e), that can be modeled using our framework. We also develop a

min-max formulation that can be used in future studies to find searcher trajectories

that minimize the maximum expected time of first detection of all the potential
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targets, as well as a model that can extend our detection-based approach to one that

includes herding potential threats away from a high value unit. As in Chung et al.

(2010), we also use a direct method to solve the generalized optimal control problems

based on Chapter 4 of Polak (1997), but we are the first to provide proofs to show that

the discretization schemes are consistent approximations to their infinite-dimensional

counterparts.

We develop rate of convergence results based on expressing the rate of conver-

gence in terms of computational work rather than the traditional number of iterations

or level of discretization. Using this approach, we provide an upper bound on the

rate of convergence that can be achieved by any optimization algorithm. We also

provide discretization policies for superlinearly and linearly convergent optimization

algorithms that achieve this upper bound. In addition, we use the rate of convergence

results we obtain to provide insight regarding the choice of numerical method used

to approximately solve the differential equations as well as approximate the spatial

integration when solving generalized optimal control problems.

We provide implementable algorithms based on our discretization schemes,

and use them to produce numerical results to show that our method is computation-

ally tractable. While Chung et al. (2010) considers a single target and as many as

three searchers, we give numerical examples that include three searchers looking for

as many as ten targets. We also investigate methods to reduce the computational

cost necessary to obtain these numerical solutions, including adaptive discretization

schemes and heuristics based on polynomial fitting.

E. ORGANIZATION

The remainder of this dissertation is outlined as follows. Chapter II gives the

objective function definitions, describes the target motion model, defines the searcher

dynamics, and provides preliminary generalized optimal control problem formulations.

Chapter III introduces the spaces necessary to complete the problem formulations and
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develops consistent approximations for the generalized optimal control problems we

consider in the dissertation. In Chapter IV, we develop rate-of-convergence results

for different classes of optimization algorithms that can be used to solve generalized

optimal control problems. Chapter V provides implementable algorithms and gives

our numerical results. In Chapter VI we present conclusions and suggest future

research opportunities. The Appendix provides some mathematical background.
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II. SITUATIONAL DESCRIPTION AND

PROBLEM FORMULATIONS

We consider the situation depicted in Figure 1, where a High Value Unit

(HVU) is operating in a two-dimensional area of interest. The HVU follows a fixed

trajectory, {x0(t) ∈ R2 : 0 ≤ t ≤ T <∞}, during the finite planning horizon [0, T ].

Without loss of generality, we assume throughout the dissertation that T = 1, and

therefore our normalized planning horizon is [0, 1]. During the transit from x0(0)

to x0(1), the HVU is under threat of attack from L targets. We assume that the

motion of these targets is conditionally deterministic, i.e., the lth target’s position,

yl(t;α), is known for all time t ∈ [0, 1] given the realization of a random vector α

which takes values in a compact set A ⊂ Rw, where w is a positive integer. It should

be noted that α will be used to represent both a random vector and its realization,

but the nature of α should be clear from the context. We assume that the probability

distribution for α is known. In an effort to detect the potential threats to the HVU,

there are K searchers operating in the vicinity of the HVU. Our goal is to determine

the trajectory, xk(t), for each of the searchers to follow during the planning horizon

that optimizes objective functions we define in Sections II.A and II.B.

There are many different ways to measure the effectiveness of a proposed

search plan. In this chapter, and throughout the dissertation, we focus on two types

of objective functions. The theory we develop can be extended to include other types

of objective functions (see, for example, Chapter VI, Sections B.1 and B.2), but for

our analysis and numerical results we concentrate on two types of objective functions:

the first type seeks to minimize the probability that all of the searchers fail to detect

any of the targets during the planning horizon; the second type seeks to maximize

the expected number of distinct targets detected during the planning horizon.

In this chapter, we begin by developing both types of objective functions for

the case of statistically dependent targets. The term dependent targets refers to the
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Figure 1. Situational Description.

case when the random variables that define the targets’ motion are dependent among

targets. A coordinated swarm attack against the HVU would be appropriately mod-

eled by the dependent target case. We then derive both types of objective functions

for the case of independent targets. The term independent targets refers to the case

when the random variables that define the targets’ motion are independent across

targets. It should be noted that in the case of independent targets there may be

dependence between the random variables that specify information about the pa-

rameters for a particular target. An attack by multiple targets whose only level of

coordination is the desire to strike the same HVU would be appropriately modeled

by the independent target case. Next, we discuss the target motion model. Finally,

we give preliminary definitions of the problems we consider in this dissertation. We

complete these problem definitions in Chapter III, after we define the appropriate

spaces for the searcher control inputs.
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A. COORDINATED TARGETS

Given α ∈ A ⊂ Rw common to all targets, the lth target follows a deterministic

trajectory,
{
yl(t;α) ∈ Rny : 0 ≤ t ≤ 1

}
, where ny is a positive integer. As an example,

α could be used to represent the uncertainty in target starting location and starting

time. Then, given the starting location and starting time for the lth target, some

type of deterministic algorithm can be used to find the trajectory for the lth target.

While the formulation that follows is valid for any w, the dimension of A, it appears

difficult to carry out the analysis for an arbitrary w. This is because w influences

the choice and characteristics of the numerical integration scheme used to calculate

search plans. During later proofs of convergence it is necessary to quantify the error

introduced by the numerical integration scheme, so we now fix w = 2.

We let rk,l : Rn × Rny → [0,∞), were n is a positive integer, denote the

detection rate for searcher k against target l, which is defined such that rk,l(xk, yl)∆t

approximates the probability of the kth searcher in state xk ∈ Rn detecting the lth

target in state yl ∈ Rny during a small time interval [t, t + ∆t). The states for the

searcher and target typically involve their locations, but could also include other

quantities such as heading and time of day. The detection rate reflects the sensor

effectiveness and we typically have that rk,l(xk, yl) is some decreasing function in

the “distance” between xk and yl. We put distance in quotations because when

n 6= ny, it is necessary to omit certain portions of the state vectors for xk and yl in

order to properly define a norm that provides a measure of the closeness of the two

state vectors. The detection rate, rk,l(·, ·), can be selected to reflect various types

of sensors and their performance against different types of targets. For theoretical

and computational reasons, rk,l(·, ·) must satisfy certain differentiability assumptions,

which we state in Assumption III.3.

Next, we derive the detection model for a particular α, but first we define some

notation. In a manner similar to Chung et al. (2010), given a particular trajectory

for the kth searcher {xk(t) : 0 ≤ t ≤ 1} and a particular trajectory for the lth target
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{yl(t;α) : 0 ≤ t ≤ 1} under realization α, we denote the probability that the kth

searcher does not detect the lth target during [0, t], t ∈ [0, 1], by qk,l(t;α). We assume

that events of detection in non-overlapping time intervals are all independent, so we

can calculate qk,l(t;α) recursively using the difference equation1

qk,l(t+∆t;α) = qk,l(t;α)
(
1−

(
rk,l(xk(t), yl(t;α))∆t+ o(∆t)

))
, qk,l(0;α) = 1, (II.1)

which becomes the parameterized differential equation

q̇k,l(t;α) ,
d

dt
qk,l(t;α) = −qk,l(t;α)rk,l(xk(t), yl(t;α)), qk,l(0;α) = 1, (II.2)

as ∆t→ 0, with solution

qk,l(t;α) = exp

(
−
∫ t

0

rk,l(xk(s), yl(s;α))ds

)
. (II.3)

We assume that the searchers make independent detection attempts and can

simultaneously detect multiple targets, and hence it follows from (II.3) that the con-

ditional probability that no searcher detects any target during the time period [0, 1],

given α and collection of searcher trajectories, {xk(t) : 0 ≤ t ≤ 1}, k = 1, 2, ..., K, is

simply the product

K∏
k=1

L∏
l=1

exp

(
−
∫ 1

0

rk,l(xk(t), yl(t;α))dt

)
= exp

(
−

K∑
k=1

L∑
l=1

∫ 1

0

rk,l(xk(t), yl(t;α))dt

)

= exp

(
−
∫ 1

0

K∑
k=1

L∑
l=1

rk,l(xk(t), yl(t;α))dt

)
.

Similarly, the conditional probability that no searcher detects the lth target

during the time period [0, 1], given α and collection of searcher trajectories, {xk(t) :

0 ≤ t ≤ 1}, k = 1, 2, ..., K, is given by the product

K∏
k=1

exp

(
−
∫ 1

0

rk,l(xk(t), yl(t;α))dt

)
= exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;α))dt

)
.

1Recall that if a function f : R→ R is o(x), then limx→0
f(x)
x = 0; see for example Definition 5.2

on page 304 in Ross (2007).
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The conditional probability that at least one of the searchers detects the lth target

during the planning horizon [0, 1], given α and collection of searcher trajectories,

{xk(t) : 0 ≤ t ≤ 1}, k = 1, 2, ..., K, is given by

1− exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;α))dt

)
. (II.4)

Then, the expected number of targets detected during the time period [0, 1], given α

and collection of searcher trajectories, {xk(t) : 0 ≤ t ≤ 1}, k = 1, 2, ..., K, is given by

L∑
l=1

[
1− exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;α))dt

)]
. (II.5)

We let φ : A→ R be the probability density function of α. For theoretical and

computational reasons, φ(·) must satisfy certain differentiability assumptions which

we state in Assumption III.1. Then, the probability that all of the searchers fail to

detect any of the targets during [0, 1] is given by∫
α∈A

exp

(
−
∫ 1

0

K∑
k=1

L∑
l=1

rk,l(xk(t), yl(t;α))dt

)
φ(α)dα, (II.6)

and the expected number of targets detected during the time period [0, 1] is given by∫
α∈A

L∑
l=1

[
1− exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;α))dt

)]
φ(α)dα

=
L∑
l=1

[
1−

∫
α∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;α))dt

)
φ(α)dα

]
. (II.7)

B. INDEPENDENT TARGETS

We now assume that the random variables that the target motion is con-

ditioned upon are independent among targets. We then have a vector of random

variables αl ∈ A ⊂ Rw, one for every target, and we assume that the probabil-

ity distribution for αl is known for all l = 1, 2, ..., L. Given a particular realiza-

tion of the random vector, αl, then the lth target follows a deterministic trajectory,{
yl(t;αl) ∈ Rny : 0 ≤ t ≤ 1

}
. We note that the components of αl can be dependent.
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Following the same development as (II.1) through (II.3), with α replaced by

αl, we find that the conditional probability that the kth searcher fails to detect the

lth target during the time period [0, 1], given αl and searcher trajectory {xk(t) : 0 ≤

t ≤ 1}, is given by

exp

(
−
∫ 1

0

rk,l(xk(t), yl(t;αl))dt

)
. (II.8)

We assume that the searchers make independent detection attempts, and hence it

follows from (II.8) that the conditional probability that no searcher detects the lth

target, given αl and collection of searcher trajectories, {xk(t) : 0 ≤ t ≤ 1}, k =

1, 2, ..., K, is simply the product

K∏
k=1

exp

(
−
∫ 1

0

rk,l(xk(t), yl(t;αl))dt

)
= exp

(
−

K∑
k=1

∫ 1

0

rk,l(xk(t), yl(t;αl))dt

)

= exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;αl))dt

)
.

We let φl : A→ R be the probability density function of αl, l = 1, 2, ..., L, and

require it to satisfy certain differentiability assumptions, which we state in Assump-

tion III.31. Then, the probability that all of the searchers fail to detect the lth target

during the time period [0, 1] is given by∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;αl))dt

)
φl(αl)dαl. (II.9)

Hence, the probability that all of the searchers fail to detect any of the targets during

[0, 1] is given by

L∏
l=1

[∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;αl))dt

)
φl(αl)dαl

]
. (II.10)

Based on (II.9), the probability that at least one of the searchers detects the lth target

during the planning horizon [0, 1] is given by

1−
∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;αl))dt

)
φl(αl)dαl. (II.11)
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Then, the expected number of targets detected during the time period [0, 1] is given

by

L∑
l=1

[
1−

∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xk(t), yl(t;αl))dt

)
φl(αl)dαl

]
. (II.12)

We use (II.6), (II.7), (II.10), and (II.12) to formulate the generalized optimal

control problems that we consider in this dissertation, but first we discuss the target

motion model which we use to generate the target trajectories {yl(t; ·) ∈ Rny : 0 ≤

t ≤ 1}.

C. TARGET MOTION MODEL

We develop this section for the coordinated target case, but note that the inde-

pendent target case is identical except that α is replaced by αl. Given a particular α,

the target trajectories, {yl(t;α) ∈ Rny : 0 ≤ t ≤ 1}, l = 1, 2, ..., L, could be generated

in numerous ways. In Chapter III, we make very light assumptions regarding yl(·; ·),

so the theory we develop applies to a broad class of targets. In order to provide a

specific numerical example, we make the conservative assumption that the targets

have full knowledge of the position of the HVU at all time. Based on this information

about the HVU, we model the targets as Dubins vehicles, i.e., nonholonomic vehicles

that are constrained to move along planar paths of bounded curvature, without re-

versing direction, that act intelligently and follow trajectories that seek to minimize

the time required, tf , for each of them to hit the HVU. The motion of the targets is

subject to additional constraints, which we now discuss in detail.

For any t ∈ [0, tf ], let ny = 3 and yl(t;α) = (yl1(t;α), yl2(t;α), yl3(t;α))T ∈ R3,

where T denotes the transpose of a vector, be the state of the lth target at time t, with

yl1(t;α) ∈ R and yl2(t;α) ∈ R denoting the horizontal and vertical components of the

location of the lth target, respectively, and yl3(t;α) ∈ R denoting the heading of the

lth target measured from the horizontal axis at time t. For any t ∈ [0, tf ], the control

input, ul,tar(t), for the target is the rate of change of the heading, which is restricted

17



to the range [−ūl,tar, ūl,tar]. The target’s speed, ‖(ẏl1(t;α), ẏl2(t;α))‖, is restricted to

the range [vlmin, v
l
max]. We require that the target’s initial and final speeds, vl0 and vlf ,

be specified. Recall that α is based on a distribution, then given a particular α, the lth

target’s starting position, yl0(α), and starting time, tl0(α), are known and we generate

its trajectory by approximately solving the following optimal control problem:

min tf

s.t. ẏl1(t;α) = ‖(ẏl1(t;α), ẏl2(t;α))‖ cos yl3(t;α), ∀t ∈ [tl0(α), tf ] (II.13)

ẏl2(t;α) = ‖(ẏl1(t;α), ẏl2(t;α))‖ sin yl3(t;α), ∀t ∈ [tl0(α), tf ] (II.14)

ẏl3(t;α) = ul,tar(t), ∀t ∈ [tl0(α), tf ] (II.15)

vlmin ≤ ‖(ẏl1(t;α), ẏl2(t;α))‖ ≤ vlmax, ∀t ∈ [tl0(α), tf ] (II.16)

−ūl,tar ≤ ul,tar(t) ≤ ūl,tar, ∀t ∈ [tl0(α), tf ] (II.17)

vl0 = ‖(ẏl1(tl0(α);α), ẏl2(tl0(α);α))‖ (II.18)

vlf = ‖(ẏl1(tf ;α), ẏl2(tf ;α))‖ (II.19)

yl(tl0(α);α) = yl0(α) (II.20)

(x0
1(tf ), x

0
2(tf )) = (yl1(tf ;α), yl2(tf ;α)) (II.21)

The target dynamics are given by equations (II.13), (II.14), and (II.15). Constraint

(II.16) restricts the target’s speed to the range [vlmin, v
l
max]. Constraint (II.17) restricts

the target’s turn rate to the range [−ūl,tar, ūl,tar]. The boundary conditions given by

(II.18) and (II.19) require the target to start and end at the given initial and final

speeds, vl0 and vlf . The boundary condition (II.20) requires the target to start at

the starting position, yl0(α), at the target’s starting time, tl0(α). The final boundary

condition (II.21) requires the target to hit the HVU at the final time, tf .

We solve this optimal control problem via a direct method that fits seventh-

order polynomials to the target trajectories in a manner similar to that found in

Yakimenko (2000) and Ghabcheloo et al. (2009). We note that the optimal control

problem used to obtain the target trajectories is time-optimal, and we are concerned

18



with search during the planning horizon [0, 1]. This will require truncation of the

target trajectories after one hour of travel time, and is further discussed in Section

V.B.1.

We are now ready to state the generalized optimal control problems that we

consider in this dissertation.

D. GENERALIZED OPTIMAL CONTROL PROBLEMS

Our goal is to find trajectories for theK searchers that optimize the expressions

(II.6), (II.7), (II.10), and (II.12). We assume that the motion of the kth searcher,

which we refer to as its “physical” dynamics, is governed by the differential equation

ẋk(t) = hk(xk(t), uk(t)), t ∈ [0, 1], xk(0) = ξk, (II.22)

where ξk is the vector of initial conditions for the kth searcher, which could include

things such as the initial position and the initial heading of the searcher, the control

uk(t) ∈ Rmk is the control input to the kth searcher at time t, which could be the rate

of change of the heading of the searcher, and therefore hk : Rn×Rmk → Rn. We also

define m =
∑K

k=1mk, ξ = (ξ1, ..., ξK)T , and u(t) = (u1(t)T , ..., uK(t)T )T , and therefore

the collection of hk is given by h : RnK × Rm → RnK . We can also handle time-

varying systems and arbitrary planning horizons by using standard transcriptions;

see for example p. 493 in Polak (1997).

In order to completely state the generalized optimal control problems, it is

necessary to limit the searcher controls to certain spaces which we define in Chap-

ter III. For now, we give preliminary definitions of the generalized optimal control

problems.

We define xη,k(t), t ∈ [0, 1], as the solution to (II.22) with η = (ξ, u) as the

input, and let xη(t) =
(
xη,1(t)T , ..., xη,K(t)T

)T
. We assume that the solution xη,k(t),

t ∈ [0, 1], exists and is unique based on assumptions we will make in Chapter III. For

coordinated targets, we refer to the problem that minimizes the probability that all

of the searchers fail to detect any of the targets during [0, 1] by choosing the best η
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as the general target problem (GTP ). From (II.6), we have the following generalized

optimal control problem formulation:

(GTP ) : min
η

{∫
α∈A

exp

(
−
∫ 1

0

K∑
k=1

L∑
l=1

rk,l(xη,k(t), yl(t;α))dt

)
φ(α)dα

}
. (II.23)

We note that constraints on searcher controls and initial conditions will be given in

Chapter III. The constrained general target problem (GTP c) is exactly the same as

(GTP ), with the addition of

u(t) ∈ U, t ∈ [0, 1], (II.24)

where U is a convex, compact subset of Rm. For coordinated targets, we refer to

the problem that maximizes the expected number of targets detected during the time

period [0, 1] by choosing the best η as the general target problem (GTP e). From

(II.7), we have the follwing generalized optimal control problem formulation:

(GTP e) : min
η

{
L∑
l=1

[
1−

∫
α∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xη,k(t), yl(t;α))dt

)
φ(α)dα

]}
.

(II.25)

The constrained general target problem (GTP c,e) is exactly the same as (GTP ) with

the addition of (II.24).

For independent targets, we refer to the problem that minimizes the probability

that all of the searchers fail to detect any of the targets during [0, 1] by choosing the

best η as (ITP p), and the problem that maximizes the expected number of targets

detected during the time period [0, 1] by choosing the best η as the independent

target problem (ITP e). From (II.10) and (II.12), respectively, we get the following

generalized optimal control problem formulations:

(ITP p) : min
η

{
L∏
l=1

[∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xη,k(t), yl(t;αl))dt

)
φl(αl)dαl

]}
,

(II.26)

and

(ITP e) : min
η

{
L∑
l=1

[
1−

∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xη,k(t), yl(t;αl))dt

)
φl(αl)dαl

]}
,

(II.27)
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The constrained independent target problems (ITP c,p) and (ITP c,e) are exactly the

same as (ITP p) and (ITP e), respectively, with the addition of (II.24). We again note

that constraints on searcher controls and initial conditions for (ITP p) and (ITP e)

will be given in Chapter III.
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III. CONSISTENT APPROXIMATIONS

The problems (GTP ), (GTP c), (GTP e), (GTP c,e), (ITP p), (ITP c,p), (ITP e),

and (ITP c,e) defined in Chapter II are infinite dimensional in both time and space.

In order to numerically solve these problems, some form of discretization is necessary.

For the discretization scheme to be useful, it must lead to implementable algorithms

that can solve the discretized problems in a reasonable amount of time, and the result-

ing solutions must correspond to the solutions of the original problems in some sense.

The discretization schemes provided in this chapter meet these requirements. In this

chapter, we also formally define the term consistent approximation, used to describe

the relationship between solutions obtained using finite-dimensional approximating

problems to the solutions of the original infinite-dimensional problems.

As alluded to in Chapter II, the problems (GTP ), (GTP c), (GTP e), (GTP c,e),

(ITP p), (ITP c,p), (ITP e), and (ITP c,e) are well defined only if the allowable searcher

controls are restricted to certain spaces. This chapter begins with specific definitions

of those spaces. The remainder of the chapter is then split into two main sections,

beginning with the treatment of coordinated targets and followed by independent tar-

gets. Both of these main sections proceed in a similar manner, as follows. First, we

define an “information state,” which we use to write the generalized optimal control

problems in terms of the spaces defined in Section III.A. Next, we state our assump-

tions and define optimality conditions for the generalized optimal control problems.

Then, we develop consistent approximations for the time-discretized search problems.

Finally, we show that the time- and space-discretized search problems are consistent

approximations for the original, continuous time-and-space search problems.

A. CONTROL INPUT

We define the problems (GTP ), (GTP c), (ITP p), (ITP c,p), (ITP e), and

(ITP c,e) using the following spaces, which are adopted from Chapters 4 and 5 of
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Polak (1997) and described here for the sake of completeness. For the sake of brevity,

we do not explicitly deal with the problems (GTP e) and (GTP c,e) in this chapter.

We note, however, that results developed in Section III.C for the problems (ITP e)

and (ITP c,e) can be trivially extended to include (GTP e) and (GTP c,e), respectively,

if αl is replaced by α and φl(·) is replaced by φ(·). We assume that the control u is

an element of a subset of Lm2 [0, 1], the space of Lebesgue square-integrable functions

from [0, 1] into Rm. Hence, initial condition and control input pairs are elements of

the space

H2 , Rn × Lm2 [0, 1]. (III.1)

We denote the Lm2 [0, 1] inner product for any pair of functions u, v ∈ Lm2 [0, 1] by

〈u, v〉2 ,
∫ 1

0
〈u(t), v(t)〉 dt, with 〈·, ·〉 denoting the Euclidean inner product. The

corresponding norms ‖u‖2 , 〈u, u〉1/22 and ‖ · ‖ , 〈·, ·〉1/2. For any η = (ξ, u) ∈ H2,

with ξ ∈ Rn and u ∈ Lm2 [0, 1], and any η′ = (ξ′, u′) ∈ H2, with ξ′ ∈ Rn and

u′ ∈ Lm2 [0, 1], we define the inner product and norm on H2, respectively, by

〈η, η′〉H2
, 〈ξ, ξ′〉+ 〈u, u′〉2 (III.2)

and

‖η‖H2 ,
(
‖ξ‖2 + ‖u‖2

2

)1/2
. (III.3)

We further restrict the control u to be an element of Lm∞[0, 1], the space of

essentially bounded, measurable functions from [0, 1] into Rm, but find it convenient

to retain the inner product and norm of Lm2 [0, 1]. Hence, as in Section 5.6 of Polak

(1997), we define the pre-Hilbert space

H∞,2 , Rn × Lm∞,2[0, 1], (III.4)

where Lm∞,2[0, 1] denotes the space Lm∞[0, 1] equipped with 〈·, ·〉2 and ‖ · ‖2. We note

that H∞,2 is dense in H2.
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We also assume that there exists a ρmax <∞ such that controls of interest at

all times are located in the interior of B(0, ρmax) , {v ∈ Rm | ‖v‖ ≤ ρmax}. Therefore,

we focus on the space

H , Rn ×U ⊂ H∞,2 (III.5)

of initial conditions and control inputs, where

U ,
{
u ∈ Lm∞,2[0, 1] | u(t) ∈ B(0, ρmax),∀t ∈ [0, 1]

}
. (III.6)

When dealing with differentiability statements we restrict ourselves to the

subset

H0 , Rn ×U0 ⊂ H, (III.7)

where

U0 ,
{
u ∈ Lm∞,2[0, 1] | u(t) ∈ B(0, γρmax), ∀t ∈ [0, 1]

}
, (III.8)

and γ ∈ (0, 1) is close to one. It is clear that, when ρmax →∞, H0 “fills” H∞,2.

Finally, we allow for the inclusion of a specific type of pointwise control con-

straint of the form u(t) ∈ U for all t ∈ [0, 1], where U ⊂ Rm is a convex compact

subset of B(0, γρmax). This means we only consider pointwise control constraints of

the form u ∈ Uc, where

Uc ,
{
u ∈ U0 | u(t) ∈ U ⊂ B(0, γρmax), ∀t ∈ [0, 1]

}
. (III.9)

We also use the notation

Hc , Rn ×Uc. (III.10)

B. COORDINATED TARGETS
1. Information State and Optimal Control Problems

In this section, we define an “information state” which we use to write the

generalized optimal control problems in terms of the spaces defined in Section III.A.
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For a given η ∈ H, recall that xη,k(t), t ∈ [0, 1], is the solution to (II.22) with η as the

input. Based on (II.23) we define the objective function f : H→ R for any η ∈ H by

f(η) ,
∫
α∈A

exp

(
−
∫ 1

0

K∑
k=1

L∑
l=1

rk,l(xη,k(t), yl(t;α))dt

)
φ(α)dα. (III.11)

In order to simplify the notation in (III.11) as well as facilitate the theoretical

development that follows, we find it useful to define a parametric “information state”

denoted by zη(t;α) ∈ R, t ∈ [0, 1], α ∈ A. For any α ∈ A, t ∈ [0, 1], and set

of searcher trajectories
{
xη,k(s), 0 ≤ s ≤ t

}
, k = 1, 2, ..., K, zη(t;α) represents the

cumulative detection rate given those searcher trajectories and vector of parameters

α and is given by

zη(t;α) ,
∫ t

0

K∑
k=1

L∑
l=1

rk,l
(
xη,k(s), yl(s;α)

)
ds, (III.12)

or equivalently by the differential equation

żη(s;α) =
K∑
k=1

L∑
l=1

rk,l
(
xη,k(s), yl(s;α)

)
∀ s ∈ [0, t], (III.13)

with zη(0;α) = 0. Using this notation, for any η ∈ H, (III.11) simplifies to

f(η) ,
∫
α∈A

exp (−zη(1;α))φ(α)dα. (III.14)

It is useful to simplify the notation in (III.14) even further. We begin by

defining the notation ξ̃ =
(
ξ1, ..., ξK , 0

)T ∈ RnK+1, where ξ̃ is a vector of initial states

for the searchers such that the first K elements correspond to the initial “physical”

states contained in η and the final element corresponds to the initial “information”

state. We then define the function F : RnK+1 × RnK+1 → R such that for any

ξ̃ ∈ RnK+1 and x̃ ∈ RnK+1, where x̃ = (x̃−1, z)
T , with x̃−1 ∈ RnK , and z ∈ R,

F (ξ̃, x̃) , e−z. (III.15)

To complete our notational simplification, for any α ∈ A, we also define the function

f̃(·;α) : H→ R by

f̃(η;α) , F
(
ξ̃, x̃η(t;α)

)
, (III.16)
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where x̃η(t;α) is an augmented state defined by combining the “physical” states with

the “information” state as follows

x̃η(t;α) ,

 xη(t)

zη(t;α)

 ∈ RnK+1, (III.17)

where xη(t) =
(
xη,1(t)T , ..., xη,K(t)T

)T
. Using this notation, for any η ∈ H the objec-

tive function in (III.14) simplifies to

f(η) ,
∫
α∈A

f̃(η;α)φ(α)dα. (III.18)

We now complete the definitions of (GTP ) and (GTP c), which were prelimi-

narily stated in Section II.D. Using the spaces defined in Section III.A we let

(GTP ) min
η∈H0

f(η), (III.19)

and

(GTP c) min
η∈Hc

f(η). (III.20)

2. Optimality Conditions

In this section, we state our assumptions and give optimality conditions for

(GTP ) and (GTP c). We begin by deriving parameterized differential equations of

the augmented dynamics in terms of the augmented state, x̃(t;α), defined in (III.17).

For t ∈ [0, 1] and α ∈ A, we define

h̃(x(t), u(t);α) ,


h1(x1(t), u1(t))

...

hK(xK(t), uK(t))∑K
k=1

∑L
l=1 r

k,l(xk(t), yl(t;α))

 ∈ RnK+1, (III.21)

where u(t) =
(
u1(t)T , ..., uK(t)T

)T
. Hence,

˙̃x(t;α) = h̃(x(t), u(t);α), t ∈ [0, 1], x̃(0;α) = ξ̃. (III.22)
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We note that x̃η(·; ·) is the solution of (III.22) when the input is η = (ξ, u), and

the augmented initial conditions are given by ξ̃ = (ξT , 0)T . We next state a series

of assumptions, beginning with those related to φ(·) and yl(·; ·). It should be noted

that in these assumptions and throughout the dissertation components of vectors are

indicated by subscripts on variables.

Assumption III.1. We assume that φ(·) is four times continuously differentiable.

Assumption III.2. We assume that

(i) for all t ∈ [0, 1], yl(t; ·) is four times continuously differentiable for all l =
1, 2, ..., L, and

(ii) yl(·, α) is Lebesgue integrable on [0, 1], for all α ∈ A.

The compactness of A and Assumptions III.1 and III.2, respectively, ensure that the

partial derivatives up to fourth-order of φ(·) and yl(t; ·), t ∈ [0, 1], are bounded. The

assumptions that φ(·) and yl(t; ·), t ∈ [0, 1], are four times continuously differentiable

and the consequence regarding the bounds on their partial derivatives up to fourth-

order are sufficient to complete the proofs of convergence in this chapter based on the

later decision to use Composite Simpson’s rule for our numerical spatial integration

scheme; see Section III.B.3b. If we had decided to use another numerical spatial

integration scheme, such as Trapezoidal rule, the assumptions on φ(·) and yl(t; ·), t ∈

[0, 1], could be relaxed to being twice continuously differentiable with the consequence

that their partial derivatives up to second-order are bounded. The assumption that

yl(·, α) is Lebesgue integrable on [0, 1], for all α ∈ A is sufficient to ensure that the

composite function rk,l(xk(·), yl(·;α)) is Lebesgue integrable on [0, 1], for all α ∈ A,

under the assumption that rk,l(·, ·) is continuous, and mild assumptions on xk(·) as

given in Assumption III.3; see Azagra et al. (2009).

The next set of assumptions are related to rk,l(·, ·) and h̃(·, ·; ·). In these

assumptions, and throughout the dissertation, we let hkx(·, ·) denote the n× n matrix

of partial derivatives with element i, j given by
∂hki (·,·)
∂xj

, and let hku(·, ·) denote the n×m
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matrix of partial derivatives with element (i, j) given by
∂hki (·,·)
∂uj

. We also adopt the

matrix norm ‖A‖ , max‖v‖=1 ‖Av‖, for any matrix A ∈ Rm×n, where v ∈ Rn is a

column vector. We note that for matrices A ∈ Rm×n, B ∈ Rn×r, and column vector

x ∈ Rn, we have that ‖Ax‖ ≤ ‖A‖‖x‖, ‖AB‖ ≤ ‖A‖‖B‖, and ‖xxT‖ = ‖x‖2 (see for

example p. 26 in Gill et al., 1991). We also adopt the notation

h̃x(x(t), u(t);α) ,


h1
x(x(t), u(t))T

...

hKx (x(t), u(t))T∑K
k=1

∑L
l=1∇xr

k,l(xk(t), yl(t;α))T

 , (III.23)

where h̃x(x(t), u(t);α) is a (nK + 1)× n matrix and

h̃u(x(t), u(t);α) ,


h1
u(x(t), u(t))T

...

hKu (x(t), u(t))T

0

 , (III.24)

where h̃u(x(t), u(t);α) is a (nK + 1)×m matrix.

Assumption III.3. We assume for all k = 1, 2, ..., K and l = 1, 2, ..., L that

(i) there exists a Cr <∞ such that for all xk ∈ Rn and yl ∈ Rny

0 ≤ rk,l(xk, yl) ≤ Cr, (III.25)

(ii) rk,l(·, yl) is continuously differentiable for all yl ∈ Rny ,

(iii) rk,l(xk, ·) is four times continuously differentiable for all xk ∈ Rn,

(iv) ∇xr
k,l(xk, ·) is four times continuously differentiable for all xk ∈ Rn,

(v) hk(·, ·) is continuously differentiable

(vi) there exist Cr1 < ∞, Cr2 < ∞, and Cr3 < ∞ such that for all xk ∈ Rn and
yl ∈ Rny , ∣∣∣∣∂jrk,l(xk, yl)∂yji

∣∣∣∣ ≤ Cr1 ∀i = 1, 2, ..., w, j = 1, 2, 3, 4, (III.26)∣∣∣∣∂j+1rk,l(xk, yl)

∂x∂yji

∣∣∣∣ ≤ Cr2 ∀i = 1, 2, ..., w, j = 1, 2, 3, 4, (III.27)
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and
‖∇xr

k,l(xk, yl)‖ ≤ Cr3, (III.28)

(vii) there exists a constant K̃ ∈ [1,∞) such that for all x′, x′′ ∈ Rn, v′, v′′ ∈
B(0, ρmax), and α ∈ A, the following hold:

‖h̃(x′, v′;α)− h̃(x′′, v′′;α)‖ ≤ K̃ [‖x′ − x′′‖+ ‖v′ − v′′‖] , (III.29)

‖h̃x(x′, v′;α)− h̃x(x′′, v′′;α)‖ ≤ K̃ [‖x′ − x′′‖+ ‖v′ − v′′‖] , (III.30)

and

‖h̃u(x′, v′;α)− h̃u(x′′, v′′;α)‖ ≤ K̃ [‖x′ − x′′‖+ ‖v′ − v′′‖] . (III.31)

We note that (III.29) implies that there exists a K̃ ′ < ∞ such that for all x′ ∈ Rn,

and v ∈ B(0, ρmax),

‖h̃(x′, v)‖ ≤ K̃ ′ [‖x′‖+ 1] . (III.32)

The assumptions about the detection rate function, rk,l(·, ·), in Assumption

III.3 are not overly restrictive as they allow for the use of many types of sensor

models, and are similar to those used by other researchers (see Chung et al., 2010,

for example). Assumptions III.3 (v) and (vii) are standard assumptions that parallel

those adopted in Assumption 5.6.2 of Polak (1997). Assumption III.3 (vii) guarantees

a unique solution to the differential equations governing the searcher dynamics given

by (III.22).

We next show that f(·) is Gateaux differentiable on H0, but in order to do

this we need the following intermediate result.

Lemma III.4. Suppose that Assumptions III.2 and III.3 are satisfied, then for any
α ∈ A, η ∈ H0, and δη ∈ H∞,2,

(a) f̃(·;α) has a Gateaux differential Df̃(η;α; δη) at η and hence a directional deriva-
tive df̃(η;α; δη), with df̃(η;α; δη) = Df̃(η;α; δη), given by

Df̃(η;α; δη) =
〈
∇ηf̃(η;α), δη

〉
H2

, (III.33)
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where the gradient ∇ηf̃(η;α) = (∇ξf̃(η;α),∇uf̃(η;α))T ∈ H∞,2 is defined by

∇ξf̃(η;α) = pη(0;α), (III.34)

∇uf̃(η;α)(t) = h̃u(x
η(t), u(t);α)Tpη(t;α), for t ∈ [0, 1], (III.35)

and pη(t;α) is the solution of the adjoint equation

ṗη(t;α) = −h̃x(xη(t), u(t);α)Tpη(t;α), t ∈ [0, 1],

pη(1;α) =


0
...
0

− exp (−zη(1;α))

 ∈ RnK+1, (III.36)

(b) the gradient ∇ηf̃(·;α) is Lipschitz H-continuous on bounded subsets of H0 for
all α ∈ A with Lipschitz constant

eK̃
′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]
, (III.37)

where K̃ ∈ [1,∞) is as in Assumption III.3(vii) and K̃ ′ <∞ is as in (III.32).

(c) f̃(·;α) is Lipschitz H-continuous on bounded subsets of H0 for all α ∈ A with

Lipschitz constant
√

2K̃eK̃ , where K̃ ∈ [1,∞) is as in Assumption III.3(vii).

(d) f̃(·;α) has a Frechet differential at η relative to H that is equal to Df̃(η;α; δη).

Proof. Parts (a) and (d) result from an application of Corollary 5.6.9 in Polak (1997).

Part (b) results from an application of Corollary 5.6.9 and the proof of Lemma 5.6.7

in Polak (1997). For part (c), we deduce from Lemma 5.6.7 in Polak (1997) that

zη(1;α) is Lipschitz H-continuous as a function of η with Lipschitz constant
√

2K̃eK̃ .

Since zη(1;α) ≥ 0 for all η ∈ H0 and α ∈ A, it follows that f̃(·;α) is Lipschitz

H-continuous with Lipschitz constant
√

2K̃eK̃ because the magnitude of the slope of

the exponential function with an argument in the domain (−∞, 0] is bounded by one.

Proposition III.5. Suppose that Assumptions III.1, III.2 and III.3 are satisfied.
Then, for any η ∈ H0 and δη ∈ H∞,2, f(·) has a Gateaux differential Df(η; δη) at η
given by

Df(η; δη) = 〈∇f(η), δη〉H2
, (III.38)

where the gradient ∇f(η) is given by

∇f(η)(t) =

∫
α∈A
∇ηf̃(η;α)(t)φ(α)dα, ∀t ∈ [0, 1]. (III.39)
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Proof. Let δη ∈ H∞,2, η ∈ H0, and α ∈ A be arbitrary. There exists a λ∗ > 0 such

that η + λδη ∈ H for all λ ∈ [0, λ∗]. For λ ∈ [0, λ∗], consider the ratio

R(α; η, δη, λ) ,
f̃(η + λδη;α)− f̃(η;α)

λ
, (III.40)

where from Lemma III.4(a) we know that

lim
λ↓0

R(α; η, δη, λ) = Df̃(η;α; δη) =
〈
∇f̃(η;α), δη

〉
H2

. (III.41)

From Lemma III.4(c) we know that

|R(α; η, δη, λ)| ≤ L‖δη‖H2 , (III.42)

with L =
√

2K̃eK̃ . We also know that

√
2K̃eK̃

∫
α∈A

φ(α)dα =
√

2K̃eK̃ . (III.43)

Then because δη is a constant with respect to α, it is clear from (III.42) and (III.43)

that for all λ, R(·; η, δη, λ) is dominated by an integrable function. Then the Lebesgue

Dominated Convergence Theorem yields that

lim
λ↓0

∫
α∈A

R(α; η, δη, λ)φ(α)dα =

∫
α∈A

lim
λ↓0

R(α; η, δη, λ)φ(α)dα. (III.44)

We then use (III.44) and (III.41) to obtain that

Df(η; δη) = lim
λ↓0

f(η + λδη;α)− f(η;α)

λ

= lim
λ↓0

∫
α∈A

f̃(η + λδη;α)− f̃(η;α)

λ
φ(α)dα

= lim
λ↓0

∫
α∈A

R(α; η, δη, λ)φ(α)dα

=

∫
α∈A

〈
∇ηf̃(η;α), δη

〉
H2

φ(α)dα. (III.45)

Finally,
〈
∇ηf̃(η;α), δη

〉
H2

is linear in δη because by Lemma III.4(d) f̃(η;α) is Frechet

differentiable relative to H. Thus, (III.39) follows directly from (III.45).
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Proposition III.5 also holds under weaker assumptions on φ(·), but because we

need Assumption III.1 later we adopt it here as well. This issue regarding Assumption

III.1 also applies elsewhere in this chapter. Our next task is to show that ∇f(·) is

Lipschitz H-continuous on bounded subsets of H0.

Lemma III.6. Suppose that Assumptions III.1, III.2 and III.3 are satisfied, then the
gradient ∇f(·) is Lipschitz H-continuous on bounded subsets of H0.

Proof. For any η′, η′′ ∈ H0, and t ∈ [0, 1],

‖∇f(η′)(t)−∇f(η′′)(t)‖ =

∥∥∥∥∫
α∈A
∇ηf̃(η′;α)(t)φ(α)dα−

∫
α∈A
∇ηf̃(η′′;α)(t)φ(α)dα

∥∥∥∥
From Lemma III.4(b) we know for any α ∈ A, ∇ηf̃(·;α) is Lipschitz H-continuous on

bounded subsets of H0 with Lipschitz constant eK̃
′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]
.

Then, ∥∥∥∥∫
α∈A
∇ηf̃(η′;α)(t)φ(α)dα−

∫
α∈A
∇ηf̃(η′′;α)(t)φ(α)dα

∥∥∥∥
≤ eK̃

′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]
‖η′ − η′′‖H2

. (III.46)

Because

∇f(η)(t) =

 ∇ξf(η)

∇uf(η)(t)

 , t ∈ [0, 1], (III.47)

we know from (III.46) that

‖∇ξf(η′)−∇ξf(η′′)‖2
+ ‖∇uf(η′)(t)−∇uf(η′′)(t)‖2

≤
[
eK̃
′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]]2

‖η′ − η′′‖2
H2
. (III.48)

Hence,

‖∇f(η′)−∇f(η′′)‖2
H2

= ‖∇ξf(η′)−∇ξf(η′′)‖2
+

∫ 1

0

‖∇uf(η′)(t)−∇uf(η′′)(t)‖2
dt

≤
[
eK̃
′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]]2

‖η′ − η′′‖2
H2

+

∫ 1

0

[
eK̃
′
[
exp

(√
2K̃eK̃

)
K̃
(√

2K̃eK̃ + 1
)]]2

‖η′ − η′′‖2
H2
dt

≤ 2
[
eK̃
′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]]2

‖η′ − η′′‖2
H2
. (III.49)
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Because K̃ and K̃ ′ are both non-negative, (III.49) implies

‖∇f(η′)−∇f(η′′)‖H2
≤
√

2eK̃
′
[
exp

(√
2K̃eK̃

)
+ K̃

(√
2K̃eK̃ + 1

)]
‖η′ − η′′‖H2

,

(III.50)

which completes the proof.

We adopt the approach of Polak (1997) (see section 4.2), and state our optimal-

ity conditions in terms of zeros of optimality functions; see also Section III.B.3a. We

specifically define the nonpositive optimality functions θ : H0 → R and θc : Hc → R

as

θ(η) , −1

2
‖∇f(η)‖2

H2
, (III.51)

and

θc(η) , min
η′∈Hc

〈∇f(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.52)

which define optimality conditions for (GTP ) and (GTP c), respectively.

Proposition III.7. Suppose that Assumptions III.1, III.2 and III.3 are satisfied.

(a) θ(·) and θc(·) are H0-continuous functions.

(b) If η̂ ∈ H0 is a local minimizer of (GTP ), then θ(η̂) = 0.

(c) If η̂ ∈ Hc is a local minimizer of (GTP c), then θc(η̂) = 0.

Proof. The proof follows the same arguments as those for the proof of Theorem 4.2.3

in Polak (1997), with Proposition III.5 taking the place of Corollary 5.6.9 from Polak

(1997) and Lemma III.6 taking the place of Theorem 4.1.3 from Polak (1997).

3. Consistent Approximations

As discussed at the outset of this chapter, in order to solve (GTP ) and (GTP c),

some form of discretization is necessary. In this section we define the approximat-

ing problems (GTPN), (GTP c
N), (GTPNM(N)), and (GTP c

NM(N)). We also present

conditions that must be satisfied to ensure that global minimizers, local minimizers,

and stationary points of the approximating problems converge to global minimizers,

local minimizers, and stationary points, respectively, of the original problems. We
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divide our development into two subsections. Both subsections develop consistent ap-

proximations for the pairs ((GTP ), θ) and ((GTP c), θc), but the first subsection is a

“stepping stone” that only deals with time discretization while the second subsection

considers time and space discretization. In both subsections, we adopt the notation

from sections 4.3 and 5.6 of Polak (1997).

a. Time-Discretized Problems

Let N denote the positive integers, and let N be an ordered infinite

subset of N defined by

N ,
{

2j
}∞
j=1

. (III.53)

To begin our development, we must first define an infinite set of finite-dimensional

subspaces HN ⊂ H∞,2, whose union is dense in H∞,2. For N ∈ N and j = 0, 1, .., N−

1, let the functions πN,j : [0, 1]→ R, be defined by

πN,j(t) ,


√
N ∀t ∈ [j/N, (j + 1)/N), if j ≤ N − 2,
√
N ∀t ∈ [j/N, (j + 1)/N ], if j = N − 1,

0, otherwise.

(III.54)

We also define the subspace LN ⊂ Lm∞,2[0, 1], by

LN ,

{
u ∈ Lm∞,2[0, 1]

∣∣∣∣∣ u(·) =
N−1∑
j=0

ūjπN,j(·), ūj ∈ Rm,∀j = 0, 1, .., N − 1

}
,

(III.55)

and let

HN , Rn × LN ⊂ H∞,2. (III.56)

The functions πN,j(·) form a basis for LN and are defined such that the relation be-

tween HN and the Euclidean space of coefficients used for numerical computation

is isometric. We use the function space HN for proofs of consistency of approxima-

tion, and the Euclidean space of coefficients to develop implementable algorithms.

The definition of the Euclidean space of coefficients, H̄N , and further discussion of

implementable algorithms are provided in Chapter V. We also define the sets

HN , H ∩HN , (III.57)
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H0
N , H0 ∩HN , (III.58)

and

Hc,N , Hc ∩HN , (III.59)

with H,H0 and Hc defined in (III.5), (III.7), and (III.10), respectively. Based on the

definition of N , it is clear that the subspaces HN possess a desirable nested structure.

This means that for any given N,N ′ ∈ N such that N ′ > N,HN ⊂ HN ′ .

We will make use of Proposition 4.3.1 from Polak (1997), which is

included here without proof for the sake of completeness. Below, we use the notation

→N to indicate convergence of a subsequence defined by N .

Proposition III.8. (a) Let H0
cl denote the closure of the set H0. Then, H0

N →N H0
cl,

as N →∞, and (b) Hc,N →N Hc, as N →∞, where set convergence is in the sense
of Painlevé-Kuratowski2; as N →∞ along the subsequence defined by N .

We now consider the approximate solution of (II.22) by means of for-

ward Euler’s method. For any η = (ξ, u) ∈ HN and N ∈ N , we set xη,kN (0) = ξk and

for any j = 0, 1, ..., N − 1, and for all k = 1, 2, ..., K

xη,kN ((j + 1)/N)− xη,kN (j/N) =
1

N
hk
(
xη,kN (j/N), uk(j/N)

)
. (III.60)

Simultaneously, we approximately solve (III.13) also by forward Euler’s

method. For any η = (ξ, u) ∈ HN , α ∈ A, and N ∈ N , we set zηN(0;α) = 0, and for

any j = 0, 1, ..., N − 1,

zηN ((j + 1)/N ;α)− zηN (j/N ;α) =
1

N

K∑
k=1

L∑
l=1

rk,l
(
xη,kN (j/N), yl(j/N ;α)

)
. (III.61)

Using the discretized “information state” given by the recursion (III.61),

we define the approximate objective functions fN : HN → R for any η ∈ HN and

N ∈ N by

fN(η) ,
∫
α∈A

exp (−zηN(1;α))φ(α)dα. (III.62)

2See Definition 5.3.6 in Polak (1997).
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Again, for the sake of notational simplification, for any α ∈ A, we also define the

functions f̃N(·;α) : H0
N → R by

f̃N(η;α) , F
(
ξ̃, x̃ηN(t;α)

)
, (III.63)

where F (·, ·) is as defined in (III.15) and x̃ηN(j/N ;α) is an augmented state defined

by

x̃ηN(j/N ;α) ,

 xηN(j/N)

zηN(j/N ;α)

 ∈ RnK+1, j = 0, 1, ..., N − 1, (III.64)

where xηN(j/N) =
(
xη,1N (j/N)T , ..., xη,KN (j/N)T

)T
, j = 0, 1, ..., N − 1. Hence, for any

N ∈ N , we define the following approximating problems

(GTPN) min
η∈H0

N

fN(η), (III.65)

and

(GTP c
N) min

η∈Hc,N

fN(η). (III.66)

We note that the problems (GTPN) and (GTP c
N) still have spatial integrals that have

not been discretized.

We want to show that fN(·), N ∈ N , are Gateaux differentiable and

that their gradients are Lipschitz continuous. In order to do this, we begin with an

intermediate result about the sums and products of Lipschitz continuous functions.

We then prove an additional intermediate result which shows that the f̃N(·; ·) are

Gateaux differentiable, and that their gradients are Lipschitz continuous.

Lemma III.9. Suppose S is a bounded subset of H0. If z, G : S → H0 are Lipschitz
H-continuous functions on S, then z + G, cz for any c ∈ R, and zG are also
Lipschitz H-continuous functions on S.

Proof. The proof follows the same arguments as the proof of Theorem 4.6.3(b) in

Sohrab (2003). In Theorem 4.6.3(b), however, the functions z, G are defined on a
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bounded interval of R and our functions z, G are defined on a bounded subset of

H0. Let Lz and LG be Lipschitz constants for z and G, respectively, then for any

η, η′ ∈ S,

‖(z +G)(η)− (z +G)(η′)‖H2 ≤ ‖z(η)−z(η′)‖H2 + ‖G(η)−G(η′)‖H2

≤ (Lz + LG)‖η − η′‖H2 , (III.67)

and

‖(cz)(η)− (cz)(η′)‖H2 = |c|‖z(η)−z(η′)‖H2 ≤ |c|Lz‖η − η′‖H2 . (III.68)

Since S is a bounded subset and z and G are both Lipschitz H-continuous on S,

there exists M > 0 such that ‖z(η)‖H2 ≤M and ‖G(η)‖H2 ≤M for all η ∈ S. Then

for any η, η′ ∈ S we have

‖(zG)(η)− (zG)(η′)‖H2 ≤ ‖G(η)‖H2‖z(η)−z(η′)‖H2

+ ‖z(η′)‖H2‖G(η)−G(η′)‖H2

≤ (MLz +MLG)‖η − η′‖H2 . (III.69)

Lemma III.10. Suppose that Assumptions III.2 and III.3 are satisfied, and that
N ∈ N , then for any α ∈ A,

(a) the function f̃N(·;α) : H0
N → R, is Gateaux differentiable, and the gradient

∇f̃N(η;α) =
(
∇ξf̃N(η;α), ∇uf̃N(η;α)

)
∈ HN is given by

∇ξf̃N(η;α) = pηN(0;α), (III.70)

∇uf̃N(η;α)(t) =
N−1∑
j=0

γηN(j/N ;α)πN,j(t), t ∈ [0, 1], (III.71)

where

γηN(j/N ;α) =

√
N

N
h̃u(x

η
N(j/N), u(j/N);α)TpηN((j + 1)/N ;α),

j = 0, 1, ..., N − 1, (III.72)
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and pηN(·;α) is determined by the adjoint equation

pηN(j/N ;α)− pηN((j + 1)/N ;α)

=
1

N
h̃x(x

η
N(j/N), u(j/N);α)TpηN((j + 1)/N ;α),

j = 0, 1, ..., N − 1,

pηN(1;α) =


0
...
0

− exp (−zηN(1;α))

 ∈ RnK+1. (III.73)

(b) For any bounded subset S of H, there exists a Lipschitz constant LS < ∞ such
that, for any N ≥ 1, j = 0, 1, ..., N , η, η′ ∈ S ∩HN , and α ∈ A,∣∣∣f̃N(η;α)− f̃N(η′;α)

∣∣∣ ≤ LS‖η − η′‖H2 , (III.74)

and ∥∥∥∇f̃N(η;α)−∇f̃N(η′;α)
∥∥∥
H2

≤ LS‖η − η′‖H2 . (III.75)

Proof. The proof of part (a) is the same as the proof of Theorem 5.6.20 in Polak

(1997), so it is not repeated here. For the proof of part (b), we begin by proving

(III.74). From Theorem 5.6.16 in Polak (1997) we deduce that zηN(1;α) is Lipschitz

continuous as a function of η. Since zηN(1;α) ≥ 0 for all η ∈ H0
N and α ∈ A, f̃N(·;α)

is Lipschitz HN -continuous because the magnitude of the slope of the exponential

function with an argument in the domain (−∞, 0] is bounded by one.

To show that∇f̃N(·;α) is Lipschitz HN -continuous on bounded subsets,

we look at its component parts beginning with (III.70). To show that ∇ξf̃N(η;α) is

Lipschitz HN -continuous on bounded subsets we proceed with an induction argument.

From (III.70) we see that ∇ξf̃N(η;α) is equal to the value of the adjoint at time zero,

pηN(0;α). In order to find pηN(0;α), we use the recursion found in (III.73). We know

that pηN(1;α) is Lipschitz HN -continuous as a function of η for the same reasons that

f̃N(·;α) is Lipschitz HN -continuous as a function of η. From Assumption III.3(vii)

and Theorem 5.6.16 in Polak (1997) we also know that h̃x (xηN (t) , u (t) ;α) is Lipschitz

HN -continuous as a function of η for any t ∈ [0, 1], and that its Lipschitz constant,
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Lh̃x <∞, is independent of t and N . Suppose that pηN((j+1)/N ;α) is Lipschitz HN -

continuous as a function of η and that its Lipschitz constant, Lp <∞, is independent

of N . Because h̃x (xηN (t) , u (t) ;α) and pηN((j + 1)/N ;α) are both Lipschitz HN -

continuous for all η ∈ S, and S is a bounded subset of H, there exists M < ∞

such that ‖h̃x (xηN (t) , u (t) ;α) ‖ ≤M and ‖pηN((j + 1)/N ;α)‖ ≤M . Then, based on

(III.73) and Lemma III.9, we have that∥∥∥pηN(j/N ;α)− pη
′

N(j/N ;α)
∥∥∥ ≤ ∥∥∥pηN((j + 1)/N ;α)− pη

′

N((j + 1)/N ;α)
∥∥∥

+
1

N

∥∥∥h̃x(xηN(j/N), u(j/N);α)TpηN((j + 1)/N ;α)

− h̃x(x
η′

N(j/N), u(j/N);α)Tpη
′

N((j + 1)/N ;α)
∥∥∥

≤ Lp‖η − η′‖H2 +
1

N
(MLh̃x +MLp)‖η − η′‖H2

= Lp

1 +
M
(
Lh̃x
Lp

+ 1
)

N

 ‖η − η′‖H2 . (III.76)

By doing another step in the backward recursion, we find that∥∥∥pηN((j − 1)/N ;α)− pη
′

N((j − 1)/N ;α)
∥∥∥

≤ Lp

1 +
M
(
Lh̃x
Lp

+ 1
)

N

2

‖η − η′‖H2

≤ Lp

1 +
M
(
Lh̃x
Lp

+ 1
)

N

N

‖η − η′‖H2 . (III.77)

Let KM = M
(
Lh̃x
Lp

+ 1
)

. There then exists an N̄ ∈ N such that for all N ≥ N̄ ,(
1 + KM

N

)N ≤ 2eKM . Then, for any N ≥ N̄ , we have∥∥∥pηN((j − 1)/N ;α)− pη
′

N((j − 1)/N ;α)
∥∥∥ ≤ 2Lpe

KM‖η − η′‖H2 . (III.78)

For values of N smaller than N̄ , we define

δi ,

(
1 +

KM

N̄ − i

)N̄−i
, i = 1, 2, ..., N̄ − 1, (III.79)
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and

Kδ , max{2, max
i=1,2,...,N̄−1

δi}. (III.80)

Then, ∥∥∥pηN((j − 1)/N ;α)− pη
′

N((j − 1)/N ;α)
∥∥∥ ≤ KδLpe

KM‖η − η′‖H2 . (III.81)

Hence, it follows by induction that ∇ξf̃N(·;α) is Lipschitz HN -continuous, and that

the Lipschitz constant is independent of N .

Next, we consider ∇uf̃N(·;α) given in (III.71). From (III.54) we know

that πN,j(t) is either 0 or
√
N . The

√
N
N

factor in the definition of γηN(·) in (III.72)

combined with the πN,j(t) value of 0 or
√
N ensures that ∇uf̃N(·;α) is independent

of N . From Assumption III.3(vii) and Theorem 5.6.16 in Polak (1997) we find that

h̃u (xηN (t) , u (t) ;α) is Lipschitz H-continuous as a function of η for any t ∈ [0, 1],

and that the Lipschitz constant is independent of t and N . Based on the induction

argument given in (III.76) through (III.81), we know that pηN( j+1
N

;α) is Lipschitz

HN -continuous as a function of η for all j = 0, 1, ..., N − 2, and that the Lipschitz

constant is independent of N . From (III.54) we see that the summation in (III.71)

is zero for all terms except where t is between j/N and (j + 1)/N . For these non-

zero terms, ∇uf̃N(·;α) is composed of products of Lipschitz HN -continuous functions

whose Lipschitz constants are independent of N , so by Lemma III.9, ∇uf̃N(η;α) is

Lipschitz HN -continuous, and its Lipschitz constant is independent of N . This means

that both components of ∇f̃N(η;α) are Lipschitz HN -continuous and their Lipschtiz

constants are independent of N and α, so the proof is complete.

Proposition III.11. Suppose that Assumptions III.1, III.2 and III.3 are satisfied,
and N ∈ N , then for any η ∈ H0

N and δη ∈ H∞,2, fN(·) has a Gateaux differential
DfN(η; δη) = 〈∇fN(η), δη〉H2

, where

∇fN(η)(t) =

∫
α∈A
∇ηf̃N(η;α)(t)φ(α)dα, ∀t ∈ [0, 1]. (III.82)

Proof. The proof follows the same arguments as the proof of Proposition III.5 with

f̃(·; ·) replaced by f̃N(·; ·), so it is not repeated here.
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Next, we show that ∇fN(·) is Lipschitz HN -continuous on bounded

subsets of H0
N .

Lemma III.12. Suppose that Assumptions III.1, III.2 and III.3 are satisfied, then
the gradient ∇fN(·) is Lipschitz HN -continuous on bounded subsets of H0

N .

Proof. The proof follows the same arguments as the proof of Lemma III.6 with f̃(·; ·)

replaced by f̃N(·; ·), so it is not repeated here.

As in Section III.B.2, we state our optimality conditions in terms of

zeros of optimality functions. For any N ∈ N , we define nonpositive optimality

functions θN : H0
N → R and θcN : Hc,N → R by

θN(η) , −1

2
‖∇fN(η)‖2

H2
, (III.83)

and

θcN(η) , min
η′∈Hc,N

〈∇fN(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.84)

which characterizes stationary points of (GTPN) and (GTP c
N), respectively.

Proposition III.13. Suppose that Assumptions III.1, III.2 and III.3 are satisfied.

(a) θN(·) and θcN(·) are H0
N -continuous functions.

(b) If η̂ ∈ H0
N is a local minimizer of (GTPN), then θN(η̂) = 0.

(c) If η̂ ∈ Hc,N is a local minimizer of (GTP c
N), then θcN(η̂) = 0.

Proof. The proof follows the same arguments as the proof of Proposition 1.1.6 in

Polak (1997), with the norms and inner products replaced with their H2 equivalents.

We are now ready to develop proofs for consistency of approximation for

the pairs ((GTPN), θN) in the sequence {((GTPN), θN)}N∈N . Because we deal with

more than one type of problem and its corresponding approximation, it is simpler to

define consistent approximations and epi-convergence using abstract problems. We

adopt the notation of Section 3.3.1 in Polak (1997) and let B be a normed linear

space, with norm ‖ · ‖B, and let R̄ , R ∪ {−∞,+∞}. We then define the problem

(P ) min
x∈X

f(x), (III.85)
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where f : B → R̄ is lower semicontinuous and X ⊂ B is a constraint set. Then let

{BN}N∈N be a family of finite-dimensional subspaces of B such that BN1 ⊂ BN2 , for

all N1 < N2 ∈ N , and ∪N∈NBN is dense in B. For all N ∈ N, let fN : BN → R̄ be

a lower semicontinuous function that approximates f(·) on BN , and let XN ⊂ BN be

an approximation to X. We then define the family of approximating problems

(PN) min
x∈XN

fN(x), N ∈ N . (III.86)

Finally, we let Xcl denote the closure of X and we define the problem (Pcl) by

(Pcl) min
x∈Xcl

f(x), (III.87)

which may not be epi-graphically equivalent to the problem (P ), but which we will

assume is equivalent to (P ) in the sense that it has the same local and global minimiz-

ers. Before we define consistent approximations, we must first define what it means

for a function to be an optimality function. As on page 398 of Polak (1997), we define

an optimality function as follows:

Definition III.1. Let S be a subset of B such that X ⊂ S. We will say that a
function θ : S → R is an optimality function for (P ) if

(i) θ(·) is sequentially upper semi-continuous,

(ii) θ(x) ≤ 0 for all x ∈ S, and

(iii) if x̂ is a local minimizer of (P ), then θ(x̂) = 0.

Similarly, for all N ∈ N , let SN be a subset of BN ∩ S such that XN ⊂ SN ⊂ S. We
will say that a function θN : SN → R is an optimality function for (PN) if

(i) θN(·) is sequentially upper semi-continuous,

(ii) θN(x) ≤ 0 for all x ∈ SN , and

(iii) if x̂N is a local minimizer of (PN), then θN(x̂N) = 0.

Then, as on page 399 of Polak (1997), we define consistent approximations as follows:
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Definition III.2. Consider the problems (P ), (PN), and (Pcl) defined in (III.85),
(III.86), and (III.87), respectively. Let S be a subset of B such that X ⊂ S and, in
addition, XN ⊂ S for all N ∈ N . Next, for all N ∈ N , let SN be a subset of S ∩ BN
such that XN ⊂ SN ⊂ S. Finally, let θa : S → R and θaN : SN → R, N ∈ N , be
optimality functions for (P ) and (PN), respectively. We say that the pairs ((PN), θaN),
in the sequence {(PN , θaN)}N∈N are consistent approximations for the pair ((P ), θa) if

(i) either (PN) epi-converges to (P ) or (PN) epi-converges to (Pcl), as N →∞, and

(ii) for any infinite sequence {xN}N∈K , K ⊂ N , with xN ∈ SN for all N ∈ K, such
that xN → x as N →∞, lim supN→∞ θ

a
N(xN) ≤ θa(x).

We base our proofs of epi-convergence on satisfying the conditions of

Theorem 3.3.2 in Polak (1997), which we state here without proof for the sake of

completeness.

Proposition III.14. The epigraphs EN , N ∈ N , of the problems (PN) converge to
the epigraph E of the problem (P ) if and only if

(a) for every x ∈ X, there exists a sequence {xN}N∈N , with xN ∈ XN , such that
xN →N x, as N →∞, and lim sup fN(xN) ≤ f(x); and

(b) for every infinite sequence {xN}N∈K , with K ⊂ N , such that xN ∈ XN , for all
N ∈ K, and xN →K x, as N →∞, x ∈ X and lim inf fN(xN) ≥ f(x).

We would like to establish epi-convergence of (GTPN) to (GTP ); un-

fortunately, this is not possible. For this reason, we make a small modification to

(GTP ) and replace H0 with its closure, H0
cl. We define this new problem as follows

(GTPcl) min
η∈H0

cl

f(η). (III.88)

It is possible to establish epi-convergence of (GTPN) to (GTPcl). We use the problem

(GTPcl), with the following assumption.

Assumption III.15. We assume that all local and global minimizers of (GTPcl) are
in H0.

Using an approach similar to that found in Section 3.3 of Polak (1997),

we next show that the pairs ((GTPN), θN) in the sequence {((GTPN), θN)}N∈N are

consistent approximations for the pair ((GTPcl), θ), which ensures that globally and
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locally optimal points as well as stationary points of (GTPN) converge to correspond-

ing points of (GTPcl), as N → ∞. In order to show the epi-convergence of (GTPN)

to (GTPcl), we will need the following intermediate result.

Proposition III.16. Suppose that Assumptions III.1, III.2 and III.3 are satisfied.
Then, given a bounded subset S ⊂ H, there exists a KS < ∞ such that for every
η ∈ S ∩HN , and N ∈ N ,

|fN(η)− f(η)| ≤ KS

N
. (III.89)

Proof. For any η ∈ S ∩HN and N ∈ N , we have that

|fN(η)− f(η)| =

∣∣∣∣∫
α∈A

exp (−zηN(1;α))φ(α)dα−
∫
α∈A

exp (−zη(1;α))φ(α)dα

∣∣∣∣
≤

∫
α∈A
|exp (−zηN(1;α))− exp (−zη(1;α))|φ(α)dα. (III.90)

By Theorem 5.6.23 in Polak (1997), we deduce that we can bound the approximation

error |zη(1;α)−zηN(1;α)|. Specifically, for any α ∈ A, given a bounded subset S ⊂ H,

for every η ∈ S ∩HN , and N ∈ N , we have

|zη(1;α)− zηN(1;α)| ≤ KS

N
, (III.91)

with

KS , max

{
1,
K̃Kξ

2

}
+Kξ, (III.92)

and

Kξ , K̃ ′ exp(K̃ ′) sup {‖ξ′‖+ 1 | (ξ′, u) ∈ S} , (III.93)

K̃ as in Assumption III.3(vii), and K̃ ′ as in (III.32). Hence, by the properties of the

exponential function and the fact that zηN(1;α) ≥ 0 for all η ∈ H0 and zη(1;α) ≥ 0

for all η ∈ H0
N , for any α ∈ A, and every η ∈ S ∩HN , and N ∈ N ,

|exp (−zηN(1;α))− exp (−zη(1;α))| ≤ |zη(1;α)− zηN(1;α)| ≤ KS

N
. (III.94)

Because KS does not depend on α, we have that

|fN(η)− f(η)| ≤
∫
α∈A
|exp (−zηN(1;α))− exp (−zη(1;α))|φ(α)dα ≤ KS

N
. (III.95)

We now show that (GTPN) epi-converges to (GTPcl).
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Theorem III.17. Suppose that Assumptions III.1, III.2, III.3 and III.15 are satis-
fied. Then (GTPN) epi-converges to (GTPcl), as N →∞.

Proof. We show that (GTPN) epi-converges to (GTPcl), as N →∞, by showing that

the conditions in Proposition III.14 are satisfied. Let η ∈ H0
cl be arbitrary. Then,

from Proposition III.8, there exists a sequence {ηN}N∈N such that ηN ∈ H0
N , for all

N ∈ N , and ηN →N η, as N → ∞. Let ε > 0. By the H-continuity of f(·), there

exists an N̄ ∈ N such that for all N ≥ N̄ , KS
N
≤ ε

2
and |f(ηN)− f(η)| ≤ ε

2
, where KS

is as in (III.92). Hence, by Proposition III.16

|fN(ηN)− f(η)| ≤ |fN(ηN)− f(ηN)|+ |f(ηN)− f(η)|

≤ KS

N
+
ε

2

≤ ε, (III.96)

for all N ≥ N̄ , N ∈ N . Consequently, fN(ηN) →N f(η) as N → ∞, satisfying

condition (a) of Proposition III.14.

In order to show that condition (b) of Proposition III.14 is satisfied,

suppose that a sequence {ηN}N∈N is such that ηN ∈ H0
N for all N ∈ N , and ηN →N η,

as N → ∞. Then, based on the construction of H0
N in (III.58), we must have that

η ∈ H0
cl. It again follows from the H-continuity of f(·) and Proposition III.16 that

fN(ηN)→N f(η) as N →∞, which satisfies condition (b) of Proposition III.14. This

proves that (GTPN) epi-converges to (GTPcl).

In order to show that the pairs ((GTPN), θN), in the sequence

{((GTPN), θN)}N∈N , and the pairs ((GTP c
N), θcN), in the sequence {((GTP c

N), θcN)}N∈N
are consistent approximations for the pairs ((GTPcl), θ) and ((GTP c), θc), respec-

tively, we will need the following two results.

Proposition III.18. Suppose that Assumptions III.1, III.2 and III.3 are satisfied,
then for every bounded subset S ⊂ H0, there exists a constant KF <∞ such that, for
any N ∈ N and η ∈ S ∩HN

‖∇fN(η)−∇f(η)‖H2 ≤
KF

N
. (III.97)
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Proof. Based on the definitions of f(η) and fN(η) given in (III.14) and (III.62),

respectively, and Propositions III.5 and III.11,∥∥∥∥∫
α∈A
∇ηf̃N(η;α)φ(α)dα−

∫
α∈A
∇ηf̃(η;α)φ(α)dα

∥∥∥∥
H2

≤
∫
α∈A

∥∥∥∇ηf̃N(η;α)−∇ηf̃(η;α)
∥∥∥
H2

φ(α)dα. (III.98)

We now focus on
∥∥∥∇ηf̃N(η;α)−∇ηf̃(η;α)

∥∥∥
H2

. By Theorem 5.6.26 in Polak (1997),

for any α ∈ A, and for every bounded subset S ⊂ H0, there exists a KF < ∞ such

that, for all N ∈ N, and η ∈ S ∩HN ,∥∥∥∇ηf̃N(η;α)−∇ηf̃(η;α)
∥∥∥
H2

≤ KF

N
. (III.99)

We deduce from the proof of Theorem 5.6.26 in Polak (1997) and Assumption III.3

that KF is independent of α. Then, we have that∫
α∈A

∥∥∥∇ηf̃N(η;α)−∇ηf̃(η;α)
∥∥∥
H2

φ(α)dα ≤ KF

N
· 1, (III.100)

which completes the proof.

Because we can only establish epi-convergence of (GTPN) to (GTPcl), and not (GTPN)

to (GTP ), we will need the following intermediate result.

Lemma III.19. Suppose H0
cl denotes the closure of H0. If a function ∇β : H0 → H

is Lipschitz H-continuous on bounded subsets of H0, then it is also Lipschitz H-
continuous on bounded subsets of H0

cl.

Proof. Because H0 is constructed from H by choosing γ ∈ (0, 1) (see (III.7) and

(III.8)), it is always possible to construct an H0′ that is slightly larger than H0 by

choosing a γ closer to one. Since H0′ contains H0
cl, and it can be shown that ∇β(·)

is Lipschitz H-continuous on bounded subsets of H0′, we can conclude that ∇β(·) is

Lipschitz H-continuous on bounded subsets of H0
cl.

We now show that the pairs ((GTPN), θN) in the sequence

{((GTPN), θN)}N∈N are consistent approximations for the pair ((GTPcl), θ).
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Theorem III.20. Suppose that Assumptions III.1, III.2, III.3, and III.15 are sat-
isfied, and that (GTPcl), θ, (GTPN), and θN are defined as in (III.88), (III.51),
(III.86), and (III.83), respectively. Then, the pairs ((GTPN), θN), in the sequence
{((GTPN), θN)}N∈N are consistent approximations for the pair ((GTPcl), θ).

Proof. Suppose that an infinite sequence {ηN}N∈N is such that ηN ∈ H0
N , for all

N ∈ N , and ηN →N η, as N →∞. Let ε > 0. From Lemma III.6 and Lemma III.19

we know that ∇f(·) is Lipschitz H-continuous on bounded subsets of H0
cl. By the

H-continuity of ∇f(·), there exists an N̄ ∈ N such that for all N ≥ N̄ , KF
N
≤ ε

2
and

‖∇f(ηN)−∇f(η)‖ ≤ ε
2
, where KF is as in Proposition III.18. Hence, by Proposition

III.18

‖∇fN(ηN)−∇f(η)‖H2 ≤ ‖∇fN(ηN)−∇f(ηN)‖H2 + ‖∇f(ηN)−∇f(η)‖H2

≤ KF

N
+
ε

2

≤ ε, (III.101)

for all N ≥ N̄ , N ∈ N . Consequently, ∇fN(ηN) →N ∇f(η), as N → ∞, implying

that θN(ηN)→N θ(η), as N →∞. Theorem III.17, together with the convergence of

θN(ηN) to θ(η) as N →∞, satisfies the requirements of Definition III.2 for consistency

of approximation.

Next, we show that the pairs ((GTP c
N), θcN) in the sequence

{((GTP c
N), θcN)}N∈N are consistent approximations for the pair ((GTP c), θc).

Theorem III.21. Suppose that Assumptions III.1, III.2, III.3, and III.15 are sat-
isfied, and that (GTP c), θc, (GTP c

N), and θcN are defined as in (III.20), (III.52),
(III.66), and (III.84), respectively. Then, the pairs ((GTP c

N), θcN), in the sequence
{((GTP c

N), θcN)}N∈N , are consistent approximations for the pair ((GTP c), θc).

Proof. The proof that the problems (GTP c
N) epi-converge to (GTP c) is the same as

the proof of epi-convergence of the problems (GTPN) to (GTPcl) given in Theorem

III.17 above.

From the proof of Theorem III.20 above, we know that ∇fN(ηN) →N

∇f(η), as N →∞. Then, following the same arguments as in the proof of Theorem
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4.3.6 in Polak (1997) we see that given any infinite sequence {ηN}N∈N , such that

ηN ∈ Hc,N for all N ∈ N , which converges to an η ∈ Hc, θ
c
N(ηN)→N θc(η), as N →

∞. Theorem III.20, together with the convergence of θcN(ηN) to θc(η) as N → ∞,

satisfies the requirements of Definition III.2 for consistency of approximation.

b. Time- and Space-Discretized Problems

We next consider the time- and space-discretized problem. As discussed

in Section II.A we focus on A ⊂ R2, and introduce the space discretization parameter,

M = (M1,M2)T ∈ N×N. We also define a generic numerical integration scheme, IM ,

for a function, Ψ : Cp(A) → R, where Cp represents the differentiability class.3 The

integration scheme IM is a mapping from Cp(A) to R or to Rn+m for any M ∈ N×N

and Ψ ∈ Cp(A) defined by

IM(Ψ) ,
M1∑
i=1

M2∑
j=1

WijΨ(αij) ≈
∫
α∈A

Ψ(α)dα, (III.102)

where Wij, i = 1, 2, ...,M1, j = 1, 2, ...,M2, are weights for the chosen numerical

integration scheme, and αij are the discretization points at which the integrand is

evaluated.

We then make use of the integration rule, IM , to define the approximate

objective function fNM : HN → R for any η ∈ HN , N ∈ N , and M ∈ N× N by

fNM(η) , IM (exp [−zηN(1; ·)]φ(·)) . (III.103)

We next consider the differentiability of fNM(·).

Proposition III.22. Suppose that Assumptions III.1, III.2, and III.3 are satisfied,
IM is defined as in (III.102), N ∈ N , M ∈ N× N, and fNM : HN → R is defined as
in (III.103), then for any η ∈ H0

N and δη ∈ H∞,2, fNM(·) has a Gateaux differential
DfNM(η; δη) = 〈∇fNM(η), δη〉H2

, where

∇fNM(η)(t) = IM

[
∇ηf̃N(η; ·)(t)φ(·)

]
,∀t ∈ [0, 1]. (III.104)

3The class C0 consists of all continuous functions on A. For any positive integer, p, Cp is the set
of all differentiable functions on A whose gradient is in Cp−1.
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Proof. Let δη ∈ H∞,2, and η ∈ H0
N be arbitrary. From Lemma III.10(a) we know

Df̃N(η;α; δη) =
〈
∇ηf̃N(η;α), δη

〉
H2

. (III.105)

Then, we have

DfNM(η; δη) = lim
λ↓0

fNM(η + λδη;α)− fNM(η;α)

λ

= lim
λ↓0

M1∑
i=1

M2∑
j=1

Wij

[
f̃N(η + λδη;αij)− f̃N(η;αij)

λ

]
φ(αij)

=

M1∑
i=1

M2∑
j=1

Wij lim
λ↓0

[
f̃N(η + λδη;αij)− f̃N(η;αij)

λ

]
φ(αij)

=

M1∑
i=1

M2∑
j=1

Wij

〈
∇ηf̃N(η;αij), δη

〉
H2

φ(αij)

=

〈
M1∑
i=1

M2∑
j=1

Wij∇ηf̃N(η;αij)φ(αij), δη

〉
H2

(III.106)

Our next result is related to the Lipschitz HN -continuity of ∇fNM(η)

on bounded subsets of H0
N .

Lemma III.23. Suppose that Assumptions III.1, III.2, and III.3 are satisfied, then
the gradient ∇fNM(η) is Lipschitz HN -continuous on bounded subsets of H0

N .

Proof. The proof follows the same arguments as the proof of Lemma III.12, with

integration replaced by IM .

In the analysis that follows, it is necessary to quantify the error in-

troduced by the numerical integration scheme in order to complete the convergence

proofs. Clearly, the choice of numerical integration scheme determines the relationship

between the discretization level and the amount of error introduced by the approxi-

mation. In order to conduct our analysis, we make the following assumptions.

Assumption III.24. We assume that there exist scalars a, b, c, and d such that

(i) A = {(α1, α2) ∈ R2|a ≤ α1 ≤ b, c ≤ α2 ≤ d}, where A represents the region of
integration in IM .
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(ii) αij = (α1(i), α2(j))T and an integer M1 is chosen so that the interval [a, b] is
subdivided into 2M1 subintervals {[α1(i − 1), α1(i)]}2M1

i=1 of equal width h =
(b − a)/2M1 by using the equally spaced discretization points α1(i) = a + ih
for i = 0, 1, 2, ..., 2M1. An integer M2 is chosen so that the interval [c, d] is
subdivided into 2M2 subintervals {[α2(j − 1), α2(j)]}2M2

j=1 of equal width k =
(d− c)/2M2 by using the equally spaced discretization points α2(j) = c+ jh for
j = 0, 1, 2, ..., 2M2. Composite Simpson’s rule is used for numerical integration
and for Ψ ∈ Cp(A) is given by

IM(Ψ) =
hk

9

(
Ψ(a, c) + Ψ(a, d) + Ψ(b, c) + Ψ(b, d) + 4

M2∑
j=1

Ψ(a, α2(2j − 1))

+ 2

M2−1∑
j=1

Ψ(a, α2(2j)) + 4

M2∑
j=1

Ψ(b, α2(2j − 1)) + 2

M2−1∑
j=1

Ψ(b, α2(2j))

+ 4

M1∑
i=1

Ψ(α1(2i− 1), c) + 2

M1−1∑
i=1

Ψ(α1(2i), c) + 4

M1∑
i=1

Ψ(α1(2i− 1), d)

+ 2

M1−1∑
i=1

Ψ(α1(2i), d) + 16

M2∑
j=1

M1∑
i=1

Ψ(α1(2i− 1), α2(2j − 1))

+ 8

M2−1∑
j=1

M1∑
i=1

Ψ(α1(2i− 1), α2(2j)) + 8

M2∑
j=1

M1−1∑
i=1

Ψ(α1(2i), α2(2j − 1))

+ 4

M2−1∑
j=1

M1−1∑
i=1

Ψ(α1(2i), α2(2j))

)
(III.107)

We note that the convergence proofs given below in Proposition III.26 would follow

similar arguments if A had higher dimensionality, or a different numerical integration

scheme had been utilized. The proofs could also be done if A was assumed to be a

shape other than rectangular, but they would be more complicated.

We find it necessary to show that the partial derivatives of f̃N(η; ·)φ(·)

and ∇ηf̃N(η; ·)φ(·) up to and including the fourth-order are bounded for any η ∈ H0
N ,

α ∈ A, and N ∈ N in order to complete the proofs of convergence of fNM(η) to

f(η) and ∇fNM(η) to ∇f(η), based on the choice of Composite Simpson’s rule as the

numerical integration scheme. To facilitate these proofs, we begin by defining some

notation. For any η ∈ H0
N , α ∈ A, N ∈ N , and j = 0, 1, ..., N − 1, we define
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ζ1(α) , exp

[
−

N−1∑
j=0

1

N

K∑
k=1

L∑
l=1

rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))]
, (III.108)

ζ2(α) , φ(α), (III.109)

ζ3(α) , pηN(0;α), (III.110)

and

ζ4(α) , pηN

(
j + 1

N
;α

)
. (III.111)

We note that ζ1(·), ζ3(·), and ζ4(·) depend on η and N . We next show that the partial

derivatives of ζ1(·), ..., ζ4(·) up to and including the fourth order are continuous and

bounded for any η ∈ H0
N , α ∈ A, and N ∈ N .

Lemma III.25. Suppose that Assumptions III.1, III.2, and III.3 are satisfied and S
is a bounded subset of H0

N . Then,

(i) ζi(·) ∈ C4(A), i = 1, 2, 3, 4,

and

(ii) there exists C < ∞, such that for all η ∈ S, j = 0, 1, ..., N − 1, α ∈ A, and
N ∈ N ∣∣∣∣∂µζκ(α)

∂αµi

∣∣∣∣ ≤ C ∀i = 1, 2,∀µ = 1, 2, 3, 4,∀κ = 1, 2, 3, 4. (III.112)

Proof. It can be seen by repeated applications of the chain and product rules that

based on Assumptions III.2(i) and III.3(iii), ζ1(·) ∈ C4(A). We also know from As-

sumption III.1 that ζ2(·) ∈ C4(A).

We now consider ζ3(α). We know that pηN(1;α) ∈ C4(A) for the same

reasons that ζ1(·) ∈ C4(A), because pηN(1;α) is a column vector of nK zeros and−ζ1(·).

We also know that h̃x
(
xηN( j

N
), u( j

N
);α
)
, j = 0, 1, ..., N−1, has hkx

(
xηN( j

N
), u( j

N
)
)
, k =

1, 2, ..., K, and
∑K

k=1

∑L
l=1∇xr

k,l
(
xηN( j

N
), yl( j

N
;α)
)

as components. Because there is

no α dependence, hkx
(
xηN( j

N
), u( j

N
)
)

and partial derivatives of hkx
(
xηN( j

N
), u( j

N
)
)

with
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respect to α are constants for all k = 1, 2, ..., K. Based on Assumptions III.2(i) and

III.3(iv), ∇xr
k,l
(
xηN( j

N
), yl( j

N
; ·)
)
∈ C4(A). This means that h̃x

(
xηN( j

N
), u( j

N
); ·
)
∈

C4(A). Next, we proceed with an induction argument. Suppose that pηN((j+1)/N ; ·) ∈

C4(A), then pηN(j/N ; ·), given by

pηN(j/N ; ·) = pηN((j+1)/N ; ·)+
1

N
h̃x(x

η
N(j/N), u(j/N); ·)TpηN((j+1)/N ; ·), (III.113)

is also C4(A). Hence, it then follows by induction that pηN(0; ·) ∈ C4(A), and therefore

ζ3(·) ∈ C4(A).

By the induction argument above, we know that pηN( j+1
N

; ·) ∈ C4(A) for

all j = 0, 1, ..., N − 2. Hence, ζ4(·) ∈ C4(A), and the proof of part (i) is complete.

We start the proof of part (ii) by looking at ζ1(α). It can be seen by

repeated use of the product and chain rules that the first through fourth-order partial

derivatives of ζ1(·) are made up of sums, differences, and products of the expressions

exp

[
−

N−1∑
j=0

1

N

K∑
k=1

L∑
l=1

rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))]
(III.114)

and

N−1∑
j=0

1

N

∂κ

∂ακi

K∑
k=1

L∑
l=1

rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))
∀i = 1, 2,∀κ = 1, 2, 3, 4. (III.115)

To prove that the first through fourth-order partial derivatives of ζ1(·) are bounded,

and that the bounds are independent of N and η, we show that expressions (III.114)

and (III.115) are bounded with respect to α, and that their bounds are independent

of N and η. We first consider (III.114). By Assumption III.3(i), there exists Cr <∞

such that ∣∣∣∣rk,l(xη,kN (
j

N

)
, yl
(
j

N
;α

))∣∣∣∣ ≤ Cr, (III.116)
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for all η ∈ S, k = 1, 2, ..., K, l = 1, 2, ..., L, α ∈ A, j = 0, 1, ..., N − 1, and N ∈ N .

Then ∣∣∣∣∣
N−1∑
j=0

1

N

K∑
k=1

L∑
l=1

rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))∣∣∣∣∣
≤ 1

N

N−1∑
j=0

K∑
k=1

L∑
l=1

∣∣∣∣rk,l(xη,kN (
j

N

)
, yl
(
j

N
;α

))∣∣∣∣
≤ 1

N

N−1∑
j=0

KLCr = KLCr. (III.117)

Hence, (III.114) is bounded by exp(−KLCr), which is independent of N and η.

Next, we consider (III.115). By Assumptions III.2(ii) and III.3(vi)∣∣∣∣ ∂κ∂ακi rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))∣∣∣∣ ≤ Cr1Cy, (III.118)

for all η ∈ S, k = 1, 2, ..., K, l = 1, 2, ..., L, α ∈ A, i = 1, 2, j = 0, 1, ..., N − 1,

κ = 1, 2, 3, 4, and N ∈ N , with Cr1 and Cy as in Assumptions III.2(ii) and III.3(vi),

respectively. Then, for all i = 1, 2, and κ = 1, 2, 3, 4∣∣∣∣∣
N−1∑
j=0

1

N

∂κ

∂ακi

K∑
k=1

L∑
l=1

rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))∣∣∣∣∣ (III.119)

≤ 1

N

N−1∑
j=0

K∑
k=1

L∑
l=1

∣∣∣∣ ∂κ∂ακi rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;α

))∣∣∣∣
≤ 1

N

N−1∑
j=0

KLCr1Cy = KLCr1Cy. (III.120)

Therefore, (III.115) is bounded by KLCr1Cy, which is independent of N and η. Be-

cause (III.114) and (III.115) are bounded, and their bounds are independent of N

and η, the first- through fourth-order partial derivatives of ζ1(α) with respect to α

are bounded, and the bounds are independent of N and η.

Now, we consider ζ2(α). From Assumption III.1 and the compactness

of A, we know that the first- through fourth-order partial derivatives of ζ2(α) are

bounded for any α ∈ A.
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We next consider ζ3(α). We know that the first- through fourth-order

partial derivatives of pηN(1;α) with respect to α, are bounded for the same reasons

that the first- through fourth-order partial derivatives of ζ1(α) are bounded. The

first- through fourth-order partial derivatives of hkx (xηN(·), u(·)), k = 1, 2, ..., K, with

respect to α are bounded because they are all equal to zero. The first- through fourth-

order partial derivatives of ∇xr
k,l
(
xηN(t), yl(t;α)

)
with respect to α are bounded for

any t ∈ [0, 1] by Assumptions III.2(ii) and III.3(vi), and the bounds are independent

of t and N . Then, because h̃x(x(t), u(t);α) is earlier defined by

h̃x(x(t), u(t);α) ,


h1
x(x(t), u(t))T

...

hKx (x(t), u(t))T∑K
k=1

∑L
l=1∇xr

k,l(xk(t), yl(t;α))T

 , (III.121)

there exists K ′
h̃x
<∞ such that∥∥∥∥ ∂κ∂ακi h̃x (xηN(j/N), u(j/N);α)

∥∥∥∥ ≤ K ′
h̃x
, (III.122)

for all η ∈ S, α ∈ A, i = 1, 2, j = 0, 1, ..., N − 1, κ = 1, 2, 3, 4, and N ∈ N .

From Assumptions III.3(ii), (iii), and (v), we know that h̃x (xηN(j/N), u(j/N);α) is

continuous with respect to α for all η ∈ S, on A. Since h̃x (xηN(j/N), u(j/N);α) is

continuous with respect to α, and S is a bounded subset of H0
N , there exists Kh̃x

<∞

such that ∥∥∥h̃x (xηN(j/N), u(j/N);α)
∥∥∥ ≤ Kh̃x

, (III.123)

for all η ∈ S, α ∈ A, j = 0, 1, ..., N − 1, and N ∈ N . Because zηN(1;α) ≥ 0 for all

η ∈ S and α ∈ A, there exists C1 < ∞ such that ‖pηN(1;α)‖ ≤ C1 for all η ∈ S,

α ∈ A, and N ∈ N . To show that pηN(j/N ;α) is bounded for all η ∈ S, α ∈ A, and

j = 0, 1, ..., N −1, we proceed with an induction argument. Suppose that there exists

Cj+1 < ∞, such that ‖pηN((j + 1)/N ;α)‖ ≤ Cj+1, for all η ∈ S, α ∈ A, and N ∈ N .
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Then, based on (III.113)

‖pηN(j/N ;α)‖ ≤ ‖pηN((j + 1)/N ;α)‖

+
1

N

∥∥∥h̃x(xηN(j/N), u(j/N);α)TpηN((j + 1)/N ;α)
∥∥∥

≤ Cj+1 +
1

N
Kh̃x

Cj+1 = Cj+1

(
1 +

Kh̃x

N

)
(III.124)

By doing another step in the backward recursion, we find that

‖pηN((j − 1)/N ;α)‖ ≤ Cj+1

(
1 +

Kh̃x

N

)
+
Kh̃x

N
Cj+1

(
1 +

Kh̃x

N

)
= Cj+1

(
1 +

Kh̃x

N

)2

≤ Cj+1

(
1 +

Kh̃x

N

)N
(III.125)

There exists N̄ ∈ N such that for all N ≥ N̄ ,
(

1 +
Kh̃x
N

)N
≤ 2eKh̃x . Then, for any

N ≥ N̄ ,

‖pηN((j − 1)/N ;α)‖ ≤ 2Cj+1e
Kh̃x . (III.126)

For values of N smaller than N̄ , we define

δi ,

(
1 +

Kh̃x

N̄ − i

)N̄−i
, i = 1, 2, ..., N̄ − 1, (III.127)

and

Kδ , max{ max
i=1,2,...,N̄−1

{δi}, 2}. (III.128)

Then,

‖pηN((j − 1)/N ;α)‖ ≤ KδCj+1e
Kh̃x . (III.129)

Hence, it follows by induction that pηN(j/N ;α) is bounded for all η ∈ S, α ∈ A,

j = 0, 1, ..., N − 1, and the bound is independent of N and η.

We now proceed with another induction argument to show that the

first- through fourth-order partial derivatives of pηN(j/N ;α) with respect to α are

bounded. Suppose the first- through fourth-order partial derivatives of pηN((j +
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1)/N ;α) with respect to α are bounded and that the bound, C ′j+1 < ∞, is inde-

pendent of N and η. Then, based on (III.113), for all η ∈ S, α ∈ A, i = 1, 2,

j = 0, 1, ..., N − 1, κ = 1, 2, 3, 4, and N ∈ N∥∥∥∥ ∂κ∂ακi pηN(j/N ;α)

∥∥∥∥ ≤ ∥∥∥∥ ∂κ∂ακi pηN((j + 1)/N ;α)

∥∥∥∥
+

1

N

∥∥∥∥ ∂κ∂ακi
(
h̃x(x

η
N(j/N), u(j/N);α)TpηN((j + 1)/N ;α)

)∥∥∥∥
≤ C ′j+1 +

1

N

∥∥∥∥h̃x(xηN(j/N), u(j/N);α)T
∂κ

∂ακi
pηN((j + 1)/N ;α)

∥∥∥∥
+

1

N

∥∥∥∥( ∂κ

∂ακi
h̃x(x

η
N(j/N), u(j/N);α)T

)
pηN((j + 1)/N ;α)

∥∥∥∥
≤ C ′j+1 +

Kh̃x
C ′j+1 + Cj+1K

′
h̃x

N

≤ C ′j+1

(
1 +

Kh̃x

N

)
+
K ′
h̃x
Cj+1

N
(III.130)

By doing another step in the backward recursion, we find∥∥∥∥ ∂κ∂ακi pηN((j − 1)/N ;α)

∥∥∥∥ ≤ C ′j+1

(
1 +

Kh̃x

N

)2

+
K ′
h̃x
Cj+1

N
+
Kh̃x

K ′
h̃x
Cj+1

N2
+
CjK

′
h̃x

N

≤ C ′j+1

(
1 +

Kh̃x

N

)N
+
K ′
h̃x
Cj+1

N
+
Kh̃x

K ′
h̃x
Cj+1

N2
+
CjK

′
h̃x

N

≤ KδC
′
j+1e

Kh̃x +KC , (III.131)

where KC <∞ is such that

KC ≥
K ′
h̃x
Cj+1

N
+
Kh̃x

K ′
h̃x
Cj+1

N2
+
CjK

′
h̃x

N
(III.132)

for any N ∈ N . Hence, it follows by induction that the first- through fourth-order

partial derivatives of pηN(0; ·) with respect to α are bounded, and therefore the first-

through fourth-order partial derivatives of ζ3(·) with respect to α are bounded. Fur-

thermore, these bounds are independent of N and η.

By the induction argument above, the first- through fourth-order par-

tial derivatives of pηN( j+1
N

; ·) with respect to α are bounded for all j = 0, 1, ..., N − 2
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and the bounds are independent of N and η. This means that the first- through

fourth-order partial derivatives of ζ4(·) with respect to α are bounded, and the proof

of part (ii) is complete.

In order to prove epi-convergence and consistency of approximation, we

need the following proposition.

Proposition III.26. Suppose that Assumptions III.1, III.2, III.3, and III.24 are
satisfied. Then for every bounded subset S ⊂ H0, there exist constants KI1, KI2 <∞
such that, for any N ∈ N , M ∈ N3 × N3, where N3 , {m ∈ 2N + 1|m ≥ 3}, and
η ∈ S ∩HN ,

(i)

|f(η)− fNM(η)| ≤ KS

N
+

KI1

(M1 − 1)4 +
KI2

(M2 − 1)4 (III.133)

and

(ii)

‖∇f(η)−∇fNM(η)‖H2 ≤
KF

N
+

KI1

(M1 − 1)4 +
KI2

(M2 − 1)4 , (III.134)

and KS and KF are defined as in (III.92) and Proposition III.18, respectively.

Proof. We know that

|f(η)− fNM(η)| ≤ |f(η)− fN(η)|+ |fN(η)− fNM(η)| , (III.135)

and

‖∇f(η)−∇fNM(η)‖H2 ≤ ‖∇f(η)−∇fN(η)‖H2 +‖∇fN(η)−∇fNM(η)‖H2 . (III.136)

Based on Proposition III.16 and Proposition III.18, respectively, |f(η)− fN(η)| ≤
KS
N

and ‖∇f(η) − ∇fN(η)‖H2 ≤ KF
N

, for any η ∈ S ∩ HN . In order to deal with

|fN(η)− fNM(η)| and ‖∇fN(η)−∇fNM(η)‖H2 , we define for notational simplicity

g1(α) , ζ1(α)ζ2(α), (III.137)

and

g2(α) , ∇f̃N(η;α)φ(α), (III.138)
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where by Lemma III.10 and the definitions given in (III.109), (III.110), and (III.111)

we can write out the components of g2(α) as

g2ξ(α) = ∇ξf̃N(η;α)φ(α) = pηN(0;α)φ(α) = ζ3(α)ζ2(α), (III.139)

and for t ∈ [0, 1]

g2ut(α) = ∇uf̃N(η;α)(t)φ(α) =

[
N−1∑
j=0

γηN

(
j

N
;α

)
πN,j(t)

]
φ(α)

=
N−1∑
j=0


h1
u

(
xηN
(
j
N

)
, u
(
j
N

))
...

hKu
(
xηN
(
j
N

)
, u
(
j
N

))
0



T

πN,j(t)ζ4(α)ζ2(α). (III.140)

Then, by Lemma III.25(i), g1(·) ∈ C4(A) and g2(·) ∈ C4(A). Again, for notational

simplicity, we define

E1 ,

∣∣∣∣IM (g1(·))−
∫
α∈A

g1(α)dα

∣∣∣∣ , (III.141)

E2ξi ,

∣∣∣∣IM(g2ξi(·))−
∫
α∈A

g2ξi(α)dα

∣∣∣∣ , (III.142)

and

E2utj ,

∣∣∣∣IM(g2utj(·))−
∫
α∈A

g2utj(α)dα

∣∣∣∣ , (III.143)

where g2ξi(α) is the ith component of g2ξ(α) and g2utj(α) is the jth component of

g2ut(α). From Lemma III.25(ii) for ρ = 1, 2ξi, 2utj, i = 1, 2, ..., nK + 1, t ∈ [0, 1], and

j = 1, 2, ...,m, there exist constants C1, C2 <∞ that have no dependence on η, α, or

N such that

max
α∈A

∣∣∣∣∂4gρ(α)

∂α4
1

∣∣∣∣ ≤ C1 (III.144)

and

max
α∈A

∣∣∣∣∂4gρ(α)

∂α4
2

∣∣∣∣ ≤ C2. (III.145)
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Then, under Assumption III.24, when using Composite Simpson’s rule to approximate

the integral of g1(·), E1 is bounded by (see, for example, pages 127–128 in Faires &

Burden, 1993)

E1 ≤
(d− c)(b− a)

180

[
(b− a)4

(M1 − 1)4 max
α∈A

∣∣∣∣∂4g1(α)

∂α4
1

∣∣∣∣+
(d− c)4

(M2 − 1)4 max
α∈A

∣∣∣∣∂4g1(α)

∂α4
2

∣∣∣∣]
≤ (d− c)(b− a)

180

[
(b− a)4

(M1 − 1)4C1 +
(d− c)4

(M2 − 1)4C2

]
≤ K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4 ,

where

K̃I1 =
C1(d− c)(b− a)5

180
, (III.146)

and

K̃I2 =
C2(b− a)(d− c)5

180
. (III.147)

Under Assumption III.24, when using Composite Simpson’s rule to ap-

proximate the integral of g2ξi(·), E2ξi is bounded for i = 1, 2, ..., nK + 1 by

E2ξi ≤
(d− c)(b− a)

180

[
(b− a)4

(M1 − 1)4 max
α∈A

∣∣∣∣∂4g2ξi(α)

∂α4
1

∣∣∣∣+
(d− c)4

(M2 − 1)4 max
α∈A

∣∣∣∣∂4g2ξi(α)

∂α4
2

∣∣∣∣]
≤ (d− c)(b− a)

180

[
(b− a)4

(M1 − 1)4C1 +
(d− c)4

(M2 − 1)4C2

]
≤ K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4 ,

where K̃I1 and K̃I2 are as above. Similarly, under Assumption III.24, when using

Composite Simpson’s rule to approximate the integral of g2utj(·), E2utj is bounded for

t ∈ [0, 1] and j = 1, 2, ...,m by

E2utj ≤
(d− c)(b− a)

180

[
(b− a)4

(M1 − 1)4 max
α∈A

∣∣∣∣∂4g2ut(α)

∂α4
1

∣∣∣∣+
(d− c)4

(M2 − 1)4 max
α∈A

∣∣∣∣∂4g2ut(α)

∂α4
2

∣∣∣∣]
≤ (d− c)(b− a)

180

[
(b− a)4

(M1 − 1)4C1 +
(d− c)4

(M2 − 1)4C2

]
≤ K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4 ,
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where, again, K̃I1 and K̃I2 are as above. Then, we have

‖∇fN(η)−∇fNM(η)‖2
H2

= ‖∇ξfN(η)−∇ξfNM(η)‖2 +

∫ 1

0

‖∇ufN(η)(t)−∇ufNM(η)(t)‖2dt

≤
nK+1∑
i=1

(
K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4

)2

+
m∑
j=1

(
K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4

)2

= (nK + 1 +m)

(
K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4

)2

. (III.148)

We let KI1 =
√
nK + 1 +mK̃I1 and KI2 =

√
nK + 1 +mK̃I2, and (III.134) follows

from (III.136). Finally,∣∣∣∣IM (g1(·))−
∫
α∈A

g1(α)dα

∣∣∣∣ ≤ K̃I1

(M1 − 1)4 +
K̃I2

(M2 − 1)4 ≤
KI1

(M1 − 1)4 +
KI2

(M2 − 1)4 ,

(III.149)

and (III.133) follows from (III.135), which completes the proof.

For any N ∈ N , and M ∈ N×N, we define the following approximating

problems

(GTPNM) min
η∈H0

N

fNM(η), (III.150)

and

(GTP c
NM) min

η∈Hc,N

fNM(η). (III.151)

For any N ∈ N , and M ∈ N × N, we define nonpositive optimality

functions θNM : H0
N → R and θcNM : Hc,N → R by

θNM(η) , −1

2
‖∇fNM(η)‖2

H2
, (III.152)

and

θcNM(η) , min
η′∈Hc,N

〈∇fNM(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.153)

which characterize stationary points of (GTPNM) and (GTP c
NM), respectively.

Proposition III.27. Suppose that Assumptions III.1, III.2, III.3, and III.24 are
satisfied.
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(a) θNM(·) and θcNM(·) are H0
N -continuous functions.

(b) If η̂ ∈ H0
N is a local minimizer of (GTPNM), then θNM(η̂) = 0.

(c) If η̂ ∈ Hc,N is a local minimizer of (GTP c
NM), then θcNM(η̂) = 0.

Proof. The proof follows the same arguments as the proof of Proposition 1.1.6 in

Polak (1997), with the norms and inner products replaced by their H2 equivalents.

The proofs of convergence that follow require that we have only one

discretization parameter, therefore for i = 1, 2, we define Mi : N → N and make the

following assumption.

Assumption III.28. We assume for i = 1, 2 that Mi(N)→∞, as N →∞.

It is not possible to establish epi-convergence of (GTPNM(N)) to (GTP ),

but it is possible to establish epi-convergence of (GTPNM(N)) to (GTPcl). We now

show that the family {((GTPNM(N)), θNM(N))}N∈N is a sequence of consistent ap-

proximations for ((GTPcl), θ) by showing that the conditions of Definition III.2 are

satisfied.

Theorem III.29. Suppose that Assumptions III.1, III.2, III.3, III.15, and III.28 are
satisfied, (GTPcl), θ, (GTPNM(N)), and θNM(N) are defined as in (III.88), (III.51),
(III.150), and (III.152), respectively. Then the pairs ((GTPNM(N)), θNM(N)), in
the sequence {((GTPNM(N)), θNM(N))}N∈N are consistent approximations for the pair
((GTPcl), θ).

Proof. We first show that (GTPNM(N)) epi-converges to (GTPcl), as N → ∞, by

showing that the conditions in Proposition III.14 are satisfied. We begin by showing

that part (a) of Proposition III.14 is satisfied. Let η ∈ H0
cl be arbitrary. Then from

Proposition III.8 there exists a sequence {ηN}N∈N such that ηN ∈ H0
N , for all N ∈ N ,

and ηN →N η as N → ∞. Let ε > 0. By Assumption III.28 and the H-continuity

of f(·), there exists an N̄ ∈ N such that for all N ≥ N̄ , KI1
(M1(N)−1)4 + KI2

(M2(N)−1)4 ≤ ε
2
,

KS
N
≤ ε

4
, and |f(ηN)− f(η)| ≤ ε

4
, where KI1 and KI2 are as in Proposition III.26, and
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KS is as in (III.92). Hence, by Proposition III.26(i),

∣∣fNM(N)(ηN)− f(η)
∣∣ ≤ ∣∣fNM(N)(ηN)− f(ηN)

∣∣+ |f(ηN)− f(η)|

≤ KS

N
+

KI1

(M1(N)− 1)4 +
KI2

(M2(N)− 1)4 +
ε

4

≤ ε (III.154)

for all N ≥ N̄ , N ∈ N . Consequently, fNM(N)(ηN) →N f(η), as N → ∞, which

completes the proof of condition (a) of Proposition III.14.

In order to show that condition (b) of Proposition III.14 is satisfied,

suppose that a sequence {ηN}N∈N is such that ηN ∈ H0
N for all N ∈ N , and ηN →N η,

as N → ∞. Based on the construction of H0
N , we must have that η ∈ H0

cl. It again

follows from the H-continuity of f(·) and Proposition III.26(i) that fNM(N)(ηN)→N

f(η) as N →∞, which satisfies condition (b) of Proposition III.14. This proves that

(GTPNM(N)) epi-converges to (GTPcl).

For the second part of the proof, we show the convergence of the opti-

mality functions. Suppose that an infinite sequence {ηN}N∈N is such that ηN ∈ H0
N ,

for all N ∈ N , and ηN →N η as N →∞. Let ε > 0. From Lemma III.6 and Lemma

III.19 we know that ∇f(·) is Lipschitz H-continuous on bounded subsets of H0
cl. By

Assumption III.28 and the H-continuity of ∇f(·), there exists an N̄ ∈ N such that

for all N ≥ N̄ , KI1
(M1(N)−1)4 + KI2

(M2(N)−1)4 ≤ ε
2
, KF

N
≤ ε

4
and ‖∇f(ηN) −∇f(η)‖H2 ≤ ε

4
,

where KI1 and KI2 are as in Proposition III.26, and KF is as in Proposition III.18.

Hence, by Proposition III.26(ii),

‖∇fNM(N)(ηN)−∇f(η)‖H2

≤ ‖∇fNM(N)(ηN)−∇f(ηN)‖H2 + ‖∇f(ηN)−∇f(η)‖H2

≤ KF

N
+

KI1

(M1(N)− 1)4 +
KI2

(M2(N)− 1)4 +
ε

4

≤ ε, (III.155)

for all N ≥ N̄ , N ∈ N . Consequently, ∇fNM(N)(ηN) →N ∇f(η) as N → ∞, and

therefore θNM(N)(ηN) →N θ(η) as N → ∞. The epi-convergence of (GTPNM(N)) to
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(GTPcl) as N →∞, together with the convergence of θNM(N)(ηN) to θ(η) as N →∞,

satisfy the requirements of Definition III.2 for consistency of approximation, which

completes the proof.

We now show that the pairs ((GTP c
NM(N)), θ

c
NM(N)) in the sequence

{((GTP c
NM(N)), θ

c
NM(N))}N∈N are consistent approximations for the pair ((GTP c), θc).

Theorem III.30. Suppose that Assumptions III.2, III.3, III.15, and III.28 are sat-
isfied, (GTP c), θc, (GTP c

NM(N)), and θcNM(N) are defined as in (III.20), (III.52),

(III.151), and (III.153), respectively. Then the pairs ((GTP c
NM(N)), θ

c
NM(N)), in

the sequence {((GTP c
NM(N)), θ

c
NM(N))}N∈N are consistent approximations for the pair

((GTP c), θc).

Proof. The proof that the problems (GTP c
NM(N)) epi-converge to (GTP c) is the

same as the proof that the problems (GTPNM(N)) epi-converge to (GTPcl) given in

Theorem III.29 above.

From the proof of Theorem III.29 above, we know that∇fNM(N)(ηN)→N

∇f(η), as N →∞. Then, following the same arguments as in the proof of Theorem

4.3.6 in Polak (1997) we see that given any infinite sequence {ηN}N∈N , such that

ηN ∈ Hc,N for all N ∈ N , which converges to an η ∈ Hc, θ
c
NM(N)(ηN) →N θc(η), as

N →∞.

C. INDEPENDENT TARGETS

We now consider the case of independent targets, where we proceed in a man-

ner similar to that used in Section III.B for the case of dependent targets. While our

assumptions and approach are similar to those used in Section III.B, the “informa-

tion state” for the case of independent targets is different than it was for the case of

dependent targets. The difference in the “information state” is explained in detail in

Section III.C.1.

This section provides discretization schemes that lead to implementable algo-

rithms for the problems (ITP e), (ITP c,e), (ITP p), and (ITP c,p), which were defined

in Chapter II. The definitions of these problems in Chapter II were incomplete be-
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cause they did not include definitions for the spaces of allowable controls. This sec-

tion begins by defining an “information state” which we use in conjunction with the

spaces from Section III.A to complete the definitions of (ITP e), (ITP c,e), (ITP p),

and (ITP c,p). Next, we state our assumptions and define optimality conditions for the

generalized optimal control problems. Then, we develop consistent approximations

for the time-discretized search problems. Finally, we show that the time- and space-

discretized search problems are consistent approximations for the original, continuous

time-and-space search problems.

1. Information State and Optimal Control Problems

Under the assumption that the random variables that the target motion is

conditioned upon are independent across targets, we use (II.9) to define the function

f l : H→ R for any η ∈ H by

f l(η) ,
∫
αl∈A

exp

(
−
∫ 1

0

K∑
k=1

rk,l(xη,k(t), yl(t;αl))dt

)
φl(αl)dαl. (III.156)

As before, the superscript l is used to denote the lth attacker and l = 1, 2, ..., L. Again,

to simplify the notation in (III.156) and facilitate the development that follows, we

find it useful to define a parametric “information state” denoted by zη,l(t;αl). For any

αl ∈ A, l = 1, 2, ..., L, t ∈ [0, 1], and set of searcher trajectories, zη,l(t;αl) represents

the cumulative detection rate given those searcher trajectories and αl, and is given

by

zη,l(t;αl) ,
∫ t

0

K∑
k=1

rk,l
(
xη,k(s), yl(s;αl)

)
ds, (III.157)

or equivalently by the differential equation

żη,l(s;αl) =
K∑
k=1

rk,l
(
xη,k(s), yl(s;αl)

)
∀ s ∈ [0, t], (III.158)

with zη,l(0;αl) = 0. It is important to note that the “information state” in (III.157)

differs from the “information state” in (III.12) for the dependent target case. In the
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dependent target case, the “information state” represented the cumulative detection

rate for all of the searchers looking for all of the targets. For the independent target

case, the “information state” represents the cumulative detection rate for all of the

searchers looking for the lth target. Using this notation, for any η ∈ H, (III.156)

simplifies to

f l(η) ,
∫
αl∈A

exp
(
−zη,l(1;αl)

)
φl(αl)dαl. (III.159)

Again, it is useful to simplify the notation in (III.159) even further. To this

end, for any αl ∈ A, l = 1, 2, ..., L, we also define the function f̃ l(·;αl) : H→ R by

f̃ l(η;αl) , F
(
ξ̃, x̃η,l(t;αl)

)
, (III.160)

where F (·; ·) is defined as in (III.15), and x̃η,l(t;αl) is an augmented state defined by

x̃η,l(t;αl) ,

 xη(t)

zη,l(t;αl)

 ∈ RnK+1. (III.161)

Using this notation, for any η ∈ H, (III.159) simplifies to

f l(η) ,
∫
αl∈A

f̃ l(η;αl)φl(αl)dαl. (III.162)

To formulate the problem of maximizing the expected number of targets de-

tected during [0, 1], we define the objective function ψe : H → R for any η ∈ H

by

ψe(η) ,
L∑
l=1

f l(η). (III.163)

Then, we consider the problem

(ITP e) min
η∈H0

ψe(η). (III.164)

We also consider the problem

(ITP c,e) min
η∈Hc

ψe(η), (III.165)

which allows for constraints on the control input. It should be noted that the prob-

lems (ITP e) and (ITP c,e) are both minimization problems despite the fact that they
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correspond to maximizing the expected number of targets detected. This is because

the probability that at least one of the searchers detects the lth target during [0, 1] is

given by 1 − f l(η), and hence the expected number of targets detected during [0, 1]

is given by
∑L

l=1

[
1− f l(η)

]
.

To formulate the problem of minimizing the probability that all of the serachers

fail to detect any of the targets during [0, 1], we define the objective function ψp :

H→ R for any η ∈ H by

ψp(η) ,
L∏
l=1

f l(η). (III.166)

Then, we consider the problems

(ITP p) min
η∈H0

ψp(η), (III.167)

and

(ITP c,p) min
η∈Hc

ψp(η). (III.168)

2. Optimality Conditions

In this section, we state our assumptions and give optimality conditions for

(ITP e), (ITP c,e), (ITP p), and (ITP c,p). We begin by deriving parameterized differ-

ential equations of the augmented dynamics in terms of the augmented state, x̃l(t;αl),

defined in (III.161). For all l = 1, 2, ..., L and t ∈ [0, 1] we define

h̃l(x(t), u(t);αl) ,


h1(x1(t), u1(t))

...

hK(xK(t), uK(t))∑K
k=1 r

k,l(xk(t), yl(t;αl))

 ∈ RnK+1. (III.169)

For a given αl ∈ A, l = 1, 2, ..., L, we write the following parameterized differential

equation to describe the augmented dynamics

˙̃xl(t) = h̃l(x(t), u(t);αl), t ∈ [0, 1], x̃l(0) = ξ̃. (III.170)
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We let x̃η,l(·) denote the solution of (III.170) when the input is η = (ξ, u), and

ξ̃ = (ξT , 0)T . We next state a series of assumptions similar to those given in Section

III.B.2, beginning with those related to φl(·) and yl(·; ·).

Assumption III.31. We assume that φl(·), l = 1, 2, ..., L is four times continuously
differentiable.

Assumption III.32. We assume that Assumption III.2 holds, with α replaced by αl,
for l = 1, 2, ..., L.

The next assumption is related to rk,l(·, ·) and h̃l(·, ·; ·), where we will adopt the

notation

h̃lx(x(t), u(t);αl) ,


h1
x(x(t), u(t))T

...

hKx (x(t), u(t))T∑K
k=1∇xr

k,l(xk(t), yl(t;αl))T

 , (III.171)

where h̃lx(x(t), u(t);αl) is a (nK + 1)× n matrix and

h̃lu(x(t), u(t);αl) ,


h1
u(x(t), u(t))T

...

hKu (x(t), u(t))T

0

 , (III.172)

where h̃lu(x(t), u(t);αl) is a (nK + 1)×m matrix.

Assumption III.33. We assume that Assumption III.3 holds with h̃(·, ·;α), h̃x(·, ·;α),
and h̃u(·, ·;α) replaced by h̃l(·, ·;αl), h̃lx(·, ·;αl), and h̃lu(·, ·;αl), respectively.

We next show that ψe(·) and ψp(·) are Gateaux differentiable on H0.

Proposition III.34. Suppose that Assumptions III.31, III.32, and III.33 are satis-
fied. Then, for any η ∈ H0 and δη ∈ H∞,2

(a) ψe(·) has a Gateaux differential Dψe(η; δη) at η given by

Dψe(η; δη) = 〈∇ψe(η), δη〉H2
, (III.173)
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where the gradient ∇ψe(η) is given by

∇ψe(η)(t) =
L∑
l=1

(∫
αl∈A
∇ηf̃

l(η;αl)(t)φl(αl)dαl
)
, ∀t ∈ [0, 1], (III.174)

and

(b) ψp(·) has a Gateaux differential Dψp(η; δη) at η given by

Dψp(η; δη) = 〈∇ψp(η), δη〉H2
, (III.175)

where the gradient ∇ψp(η) is given by

∇ψp(η)(t)

=
L∑
l=1

[∫
αl∈A
∇ηf̃

l(η;αl)(t)φl(αl)dαl
] L∏

j=1|j 6=l

∫
αj∈A

f̃ j(η;αj)φj(αj)dαj

 ,

∀t ∈ [0, 1]. (III.176)

Proof. Part (a) follows by the same arguments as those used in the proof of Propo-

sition III.5, with f̃(·;α) replaced by f̃ l(·;αl), and the recognition that the Gateaux

derivative of a sum is the sum of the Gateaux derivatives. Part (b) follows in a similar

manner, with an application of a product rule for Gateaux derivatives.

As in Section III.B.2, we again observe that Proposition III.34 also holds under

weaker assumptions on φl(·), but because we need Assumption III.31 later we adopt

it here as well. This issue regarding Assumption III.31 also applies elsewhere in this

chapter. Our next task is to show that ∇ψe(·) and ∇ψp(·) are Lipschitz H-continuous

on bounded subsets of H0.

Lemma III.35. Suppose that Assumptions III.31, III.32, and III.33 are satisfied,
then

(a) the gradient ∇ψe(·) is Lipschitz H-continuous on bounded subsets of H0, and

(b) the gradient ∇ψp(·) is Lipschitz H-continuous on bounded subsets of H0.

Proof. By Lemma III.9, sums and products of Lipschitz H-continuous functions are

Lipschitz H-continuous on bounded subsets of H0. Based on Lemma III.6 we know
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that the components of (III.174) and (III.176) are all Lipschitz H-continuous, and

therefore the entire summations in (III.174) and (III.176) are Lipschitz H-continuous.

We define nonpositive optimality functions θe : H0 → R, θc,e : Hc → R,

θp : H0 → R, and θc,p : Hc → R by

θe(η) , −1

2
‖∇ψe(η)‖2

H2
, (III.177)

θc,e(η) , min
η′∈Hc

〈∇ψe(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.178)

θp(η) , −1

2
‖∇ψp(η)‖2

H2
, (III.179)

and

θc,p(η) , min
η′∈Hc

〈∇ψp(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.180)

which define optimality conditions for (ITP e), (ITP c,e), (ITP p), and (ITP c,p), re-

spectively.

Proposition III.36. Suppose that Assumptions III.31, III.32, and III.33 are satis-
fied.

(a) θe(·), θc,e(·), θp(·), and θc,p(·) are H0-continuous functions.

(b) If η̂ ∈ H0 is a local minimizer of (ITP e), then θe(η̂) = 0.

(c) If η̂ ∈ Hc is a local minimizer of (ITP c,e), then θc,e(η̂) = 0.

(d) If η̂ ∈ H0 is a local minimizer of (ITP p), then θp(η̂) = 0.

(e) If η̂ ∈ Hc is a local minimizer of (ITP c,p), then θc,p(η̂) = 0.

Proof. The proof follows the same arguments as those for the proof of Theorem

4.2.3 in Polak (1997), with Proposition III.34 taking the place of Corollary 5.6.9 from

Polak (1997) and Lemma III.35 taking the place of Theorem 4.1.3 from Polak (1997).
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3. Consistent Approximations

In this section we define the approximating problems (ITP e
N), (ITP c,e

N ), (ITP p
N),

and (ITP c,p
N ), and present consistency conditions for them. As in the case of de-

pendent targets, we divide our development into two subsections. Both subsec-

tions develop consistent approximations for the pairs ((ITP e), θe), ((ITP c,e), θc,e),

((ITP p), θp), and ((ITP c,p), θc,p), but the first subsection only deals with time dis-

cretization while the second subsection considers time and space discretization.

a. Time-Discretized Problems

We again consider the approximate solution of (II.22) by means of for-

ward Euler’s method, which was given in (III.60). Simultaneously, we approximately

solve (III.158) also by forward Euler’s method. For any η = (ξ, u) ∈ HN , αl ∈ A, and

N ∈ N , we set zη,lN (0;αl) = 0, l = 1, 2, ..., L, and for any j = 0, 1, ..., N − 1,

zη,lN
(
(j + 1)/N ;αl

)
− zη,lN

(
j/N ;αl

)
=

1

N

K∑
k=1

rk,l
(
xη,kN (j/N), yl(j/N ;αl)

)
. (III.181)

Using the discretized “information state” given by the recursion (III.181),

we define the approximate objective functions ψe,N : HN → R and ψp,N : HN → R

for any η ∈ HN and N ∈ N by

ψeN(η) ,
L∑
l=1

∫
αl∈A

exp
(
−zη,lN (1;αl)

)
φl(αl)dαl, (III.182)

and

ψpN(η) ,
L∏
l=1

∫
αl∈A

exp
(
−zη,lN (1;αl)

)
φl(αl)dαl. (III.183)

We also define the individual components of (III.182) and (III.183) by

f lN(η) ,
∫
αl∈A

exp
(
−zη,lN (1;αl)

)
φl(αl)dαl,∀l = 1, 2, ..., L. (III.184)

Again, for the sake of notational simplification, for any αl ∈ A, l = 1, 2, ..., L, we also

define the functions f̃ lN(·;αl) : H0
N → R by

f̃ lN(η;αl) , F
(
ξ̃, x̃η,lN (t;αl)

)
, (III.185)
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where F is as defined in (III.15) and x̃η,lN (j/N ;αl) is an augmented state defined by

x̃η,lN (j/N ;αl) ,

 xηN(j/N)

zη,lN (j/N ;αl)

 ∈ RnK+1, j = 0, 1, ..., N − 1. (III.186)

Hence, for any N ∈ N , we define the following approximating problems

(ITP e
N) min

η∈H0
N

ψeN(η), (III.187)

(ITP c,e
N ) min

η∈Hc,N

ψeN(η), (III.188)

(ITP p
N) min

η∈H0
N

ψpN(η), (III.189)

and

(ITP c,p
N ) min

η∈Hc,N

ψpN(η). (III.190)

We next consider the differentiability of ψeN(·) and ψpN(·).

Proposition III.37. Suppose that Assumptions III.31, III.32, and III.33 are satis-
fied, and N ∈ N . Then, for any η ∈ H0

N and δη ∈ H∞,2

(a) ψeN(·) has a Gateaux differential DψeN(η; δη) = 〈∇ψeN(η), δη〉H2
, where

∇ψeN(η)(t) =
L∑
l=1

∫
αl∈A
∇ηf̃

l
N(η;αl)(t)φl(αl)dαl,∀t ∈ [0, 1], (III.191)

and

(b) ψpN(·) has a Gateaux differential DψpN(η; δη) = 〈∇ψpN(η), δη〉H2
, where

∇ψpN(η)(t)

=
L∑
l=1

[∫
αl∈A
∇ηf̃

l
N(η;αl)(t)φl(αl)dαl

] L∏
j=1|j 6=l

∫
αj∈A

f̃ jN(η;αj)φj(αj)dαj

 ,

∀t ∈ [0, 1]. (III.192)
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Proof. Part (a) can be proven by the same arguments used in the proof of Propo-

sition III.5, with f̃(·;α) replaced by f̃ lN(·;αl), and the recognition that the Gateaux

derivative of a sum is the sum of the Gateaux derivatives. Part (b) follows in a similar

manner, with an application of a product rule for Gateaux derivatives.

Next we show that ∇ψeN(·) and ∇ψpN(·) are Lipschitz HN -continuous

on bounded subsets of H0
N .

Lemma III.38. Suppose that Assumptions III.31, III.32, and III.33 are satisfied,
then

(a) the gradient ∇ψeN(·) is Lipschitz HN -continuous on bounded subsets of H0
N , and

(b) the gradient ∇ψpN(·) is Lipschitz HN -continuous on bounded subsets of H0
N .

Proof. By Lemma III.9, sums and products of Lipschitz HN -continuous functions are

Lipschitz HN -continuous on bounded subsets of H0
N . Based on Lemma III.10(b) we

know that the components of (III.191) and (III.192) are all Lipschitz HN -continuous,

and therefore the entire summations in (III.191) and (III.192) are Lipschitz HN -

continuous.

For any N ∈ N , we define nonpositive optimality functions θeN : H0
N →

R, θc,eN : Hc,N → R, θpN : H0
N → R, and θc,pN : Hc,N → R by

θeN(η) , −1

2
‖∇ψeN(η)‖2

H2
, (III.193)

θc,eN (η) , min
η′∈Hc,N

〈∇ψsN(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.194)

θpN(η) , −1

2
‖∇ψpN(η)‖2

H2
, (III.195)

and

θc,pN (η) , min
η′∈Hc,N

〈∇ψpN(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.196)

which characterize stationary points of (ITP e
N), (ITP c,e

N ), (ITP p
N), and (ITP c,p

N ),

respectively.
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Proposition III.39. Suppose that Assumptions III.31, III.32, and III.33 are satis-
fied.

(a) θeN(·), θc,eN (·), θpN(·), and θc,pN (·) are H0
N -continuous functions.

(b) If η̂ ∈ H0
N is a local minimizer of (ITP e

N), then θeN(η̂) = 0.

(c) If η̂ ∈ Hc,N is a local minimizer of (ITP c,e
N ), then θc,eN (η̂) = 0.

(d) If η̂ ∈ H0
N is a local minimizer of (ITP p

N), then θpN(η̂) = 0.

(e) If η̂ ∈ Hc,N is a local minimizer of (ITP c,p
N ), then θc,pN (η̂) = 0.

Proof. The proof follows the same arguments as the proof of Proposition 1.1.6 in

Polak (1997), with the norms and inner products replaced with their H2 equivalents.

As is the case in Section III.B.3a with epi-convergence of (GTPN) to

(GTP ), it is not possible to establish epi-convergence of (ITP e
N) to (ITP s) or (ITP p

N)

to (ITP p). We define the problems

(ITP e
cl) min

η∈H0
cl

ψe(η), (III.197)

and

(ITP p
cl) min

η∈H0
cl

ψp(η), (III.198)

because it is possible to establish epi-convergence of (ITP e
N) to (ITP e

cl) and (ITP p
N)

to (ITP p
cl). We will use the problems (ITP e

cl) and (ITP p
cl), with the following assump-

tion.

Assumption III.40. We assume that all local and global minimizers of (ITP e
cl) and

(ITP p
cl) are in H0.

Again, in a manner similar to that of Section 3.3 of Polak (1997) we

next show that the pairs ((ITP e
N), θeN) in the sequence {((ITP e

N), θeN)}N∈N and the

pairs ((ITP p
N), θpN) in the sequence {((ITP p

N), θpN)}N∈N are consistent approximations

for the pairs ((ITP e
cl), θ

e) and ((ITP p
cl), θ

p), respectively. In order to establish epi-

convergence, we will need the following intermediate result.
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Lemma III.41. Suppose that βl : H → [0, 1] and βlN : HN → [0, 1], l = 1, 2, ..., L,
N ∈ N, are such that for all η ∈ H, l = 1, 2, ..., L, and N ∈ N,∣∣βlN(η)− βl(η)

∣∣ ≤ ∆(N) (III.199)

where ∆ : N → [0,∞) is a strictly decreasing function with ∆(N) → 0, as N → ∞.
Then for all N ∈ N and η ∈ H,

(a) ∣∣∣∣∣
L∑
l=1

βlN(η)−
L∑
l=1

βl(η)

∣∣∣∣∣ ≤ L∆(N) (III.200)

and

(b) there is a constant Kπ <∞ such that∣∣∣∣∣
L∏
l=1

βlN(η)−
L∏
l=1

βl(η)

∣∣∣∣∣ ≤ Kπ∆(N). (III.201)

Proof. To prove part (a), we expand the summations in (III.200), combine terms,

and use the triangle inequality to write∣∣∣∣∣
L∑
l=1

βlN(η)−
L∑
l=1

βl(η)

∣∣∣∣∣ =

∣∣∣∣∣
L∑
l=1

(
βlN(η)− βl(η)

)∣∣∣∣∣
≤

L∑
l=1

∣∣βlN(η)− βl(η)
∣∣

≤ L∆(N) (III.202)

For the proof of part (b), we write out both the products in (III.201)

and express βlN(η) in terms of βl(η) and ∆(N), then because βl(η) ∈ [0, 1] and

βlN(η) ∈ [0, 1] for all l we have that∣∣∣∣∣
L∏
l=1

βlN(η)−
L∏
l=1

βl(η)

∣∣∣∣∣
≤

L∏
l=1

(
βl(η) + ∆(N)

)
−

L∏
l=1

βl(η) (III.203)

≤
L∑
l=1

(
L

l

)
[∆(N)]l , (III.204)
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where the final inequality follows from taking the product of the
(
βl(η) + ∆(N)

)
in

(III.203) and combining like terms. Then because ∆(N)→ 0 as N →∞, there exists

N̄ ∈ N such that for all N ≥ N̄ there is a constant Kπ <∞ such that

L∑
l=1

(
L

l

)
[∆(N)]l = L∆(N) +

L∑
l=2

(
L

l

)
[∆(N)]l ≤ Kπ∆(N). (III.205)

We now show the epi-convergence of (ITP e
N) to (ITP e

cl) and (ITP p
N)

to (ITP p
cl).

Theorem III.42. Suppose that Assumptions III.31, III.32, III.33, and III.40 are
satisfied. Then

(a) (ITP e
N) epi-converges to (ITP e

cl), as N →∞, and

(b) (ITP p
N) epi-converges to (ITP p

cl), as N →∞.

Proof. The proof follows the same arguments as the proof of Theorem III.17. We

then invoke Lemma III.41(a) and (b) to complete the proofs of parts (a) and (b),

respectively.

In order to show consistency of approximation for the pairs ((ITP e
N), θeN),

((ITP c,e
N ), θc,eN ), ((ITP p

N), θpN), and ((ITP c,p
N ), θc,pN ) we will need the following two

results.

Lemma III.43. Suppose that there exist constants, C l <∞ and C l
N <∞, and that

the functions ∇βl : H0 → H, ∇βlN : H0
N → HN , βl : H → [0, 1], and βlN : HN →

[0, 1], l = 1, 2, ..., L, N ∈ N, satisfy

‖∇βl(η)‖H2 ≤ C l, ∀l = 1, 2, ..., L, η ∈ H0 (III.206)

‖∇βlN(η)‖H2 ≤ C l
N , ∀l = 1, 2, ..., L, η ∈ H0

N , N ∈ N (III.207)∣∣βlN(η)− βl(η)
∣∣ ≤ ∆(N), ∀l = 1, 2, ..., L, η ∈ HN , N ∈ N (III.208)

and ∥∥∇βlN(η)−∇βl(η)
∥∥
H2
≤ ∆(N), ∀l = 1, 2, ..., L, η ∈ H0

N , N ∈ N, (III.209)

where ∆ : N → [0,∞) is a strictly decreasing function with ∆(N) → 0, as N → ∞.
Then,
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(a) for all N ∈ N and η ∈ H0
N∥∥∥∥∥

L∑
l=1

∇βlN(η)−
L∑
l=1

∇βl(η)

∥∥∥∥∥
H2

≤ L
√

2∆(N), (III.210)

and

(b) there is a constant KπG <∞ such that for all N ∈ N and η ∈ H0
N∥∥∥∥∥∥

L∑
l=1

∇βlN(η)
L∏

j=1|j 6=l

βjN(η)−
L∑
l=1

∇βl(η)
L∏

j=1|j 6=l

βj(η)

∥∥∥∥∥∥
H2

≤ KπG∆(N). (III.211)

Proof. We begin by proving part (a). We know that∥∥∥∥∥
L∑
l=1

∇βlN(η)−
L∑
l=1

∇βl(η)

∥∥∥∥∥
H2

≤
L∑
l=1

∥∥∇βlN(η)−∇βl(η)
∥∥
H2
. (III.212)

Let l = 1, 2, ..., L, N ∈ N, and η ∈ H0
N be arbitrary, then based on the definition of

the H2 norm
∥∥∇βlN(η)−∇βl(η)

∥∥
H2
≤ ∆(N) implies that

∥∥∇βlN(η)−∇βl(η)
∥∥2

H2
=

∥∥∇ξβ
l
N(η)−∇ξβ

l(η)
∥∥2

+

∫ 1

0

∥∥∇uβ
l
N(η)(t)−∇uβ

l(η)(t)
∥∥2
dt

≤ [∆(N)]2 + [∆(N)]2 , (III.213)

where ∇ξβ
l
N(η) ∈ Rn, ∇ξβ

l(η) ∈ Rn, ∇uβ
l
N(η) ∈ U, and ∇uβ

l(η) ∈ U. Hence

∥∥∇βlN(η)−∇βl(η)
∥∥
H2
≤
√

2∆(N), ∀l = 1, 2, ..., L, (III.214)

which completes the proof of part (a).

For the proof of part (b), let glN(η) ,
∏L

j=1|j 6=l β
j
N(η) and gl(η) ,∏L

j=1|j 6=l β
j(η). Then,∥∥∥∥∥∥

L∑
l=1

∇βlN(η)
L∏

j=1|j 6=l

βjN(η)−
L∑
l=1

∇βl(η)
L∏

j=1|j 6=l

βj(η)

∥∥∥∥∥∥
H2
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=

∥∥∥∥∥
L∑
l=1

glN(η)∇βlN(η)−
L∑
l=1

gl(η)∇βl(η)

∥∥∥∥∥
H2

≤
L∑
l=1

∥∥glN(η)∇βlN(η)− gl(η)∇βl(η)
∥∥
H2
. (III.215)

Based on the definition of the H2 norm we have

∥∥glN(η)∇βlN(η)− gl(η)∇βl(η)
∥∥2

H2
=

∥∥glN(η)∇ξβ
l
N(η)− gl(η)∇ξβ

l(η)
∥∥2

+

∫ 1

0

∥∥glN(η)∇uβ
l
N(η)(t)− gl(η)∇uβ

l(η)(t)
∥∥2
dt.

(III.216)

Based on Lemma III.41(b), there exist constants K l
g < ∞, l = 1, 2, ..., L, such that

∀N ∈ N, and ∀η ∈ H0
N ∣∣glN(η)− gl(η)

∣∣ ≤ K l
g∆(N). (III.217)

We then consider the first term on the right-hand side of (III.216), which can be

rewritten

∥∥glN(η)∇ξβ
l
N(η)− gl(η)∇ξβ

l(η)
∥∥2

=
∥∥gl(η)∇ξβ

l
N(η)− gl(η)∇ξβ

l(η) +
(
glN(η)− gl(η)

)
∇ξβ

l
N(η)

∥∥2

≤ gl(η)2
∥∥∇ξβ

l
N(η)−∇ξβ

l(η)
∥∥2

+
∥∥(glN(η)− gl(η)

)
∇ξβ

l
N(η)

∥∥2

≤ [∆(N)]2 +
(
glN(η)− gl(η)

)2 ∥∥∇ξβ
l
N(η)

∥∥2

≤ [∆(N)]2 +
(
K l
g

)2
[∆(N)]2

∥∥∇ξβ
l
N(η)

∥∥2

≤ [∆(N)]2 +
(
C l
N

)2 (
K l
g

)2
[∆(N)]2

≤
(

1 +
(
C l
N

)2 (
K l
g

)2
)

[∆(N)]2 . (III.218)
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Next, we consider the second term in the sum on the right-hand side

of (III.216), which can be rewritten∫ 1

0

∥∥glN(η)∇uβ
l
N(η)(t)− gl(η)∇uβ

l(η)(t)
∥∥2
dt

=

∫ 1

0

∥∥gl(η)∇uβ
l
N(η)(t)− gl(η)∇uβ

l(η)(t) +
(
glN(η)− gl(η)

)
∇uβ

l
N(η)(t)

∥∥2
dt

≤ gl(η)2

∫ 1

0

∥∥∇uβ
l
N(η)(t)−∇uβ

l(η)(t)
∥∥2
dt+

∫ 1

0

∥∥(glN(η)− gl(η)
)
∇uβ

l
N(η)(t)

∥∥2
dt

≤ [∆(N)]2 +

∫ 1

0

(
glN(η)− gl(η)

)2 ∥∥∇uβ
l
N(η)(t)

∥∥2
dt

≤ [∆(N)]2 +
(
K l
g

)2
[∆(N)]2

∫ 1

0

∥∥∇uβ
l
N(η)(t)

∥∥2
dt

≤ [∆(N)]2 +
((
C l
N

)2 (
K l
g

)2
)

[∆(N)]2 ≤
(

1 +
(
C l
N

)2 (
K l
g

)2
)

[∆(N)]2 . (III.219)

Hence

∥∥glN(η)∇βlN(η)− gl(η)∇βl(η)
∥∥
H2
≤
√

2
(

1 +
(
C l
N

)2 (
K l
g

)2
)

∆(N), ∀l = 1, 2, ..., L.

(III.220)

Then KπG =
∑L

l=1

√
2
(

1 +
(
C l
N

)2 (
K l
g

)2
)

, and the proof is complete.

Proposition III.44. Suppose that Assumptions III.31, III.32, and III.33 are satis-
fied, then for every bounded subset S ⊂ H0,

(a) there exists a constant KΣF <∞ such that, for any N ∈ N and η ∈ S ∩HN

‖∇ψeN(η)−∇ψe(η)‖H2 ≤
KΣF

N
(III.221)

and

(b) there exists a constant KπF <∞ such that, for any N ∈ N and η ∈ S ∩HN

‖∇ψpN(η)−∇ψp(η)‖H2 ≤
KπF

N
. (III.222)

Proof. From Proposition III.16, we deduce that∫
αl∈A

∣∣∣f̃ lN(η;αl)− f̃ l(η;αl)
∣∣∣φl(αl)dαl ≤ KS

N
. (III.223)
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The proof then follows the same arguments as the proof of Proposition III.18 with

Propositions III.5 and III.11 replaced by Propositions III.34 and III.37, respectively.

We then invoke Lemma III.43(a) and (b) to complete the proofs of parts (a) and (b),

respectively.

We now show that the pairs ((ITP e
N), θeN) in the sequence

{((ITP e
N), θeN)}N∈N and the pairs ((ITP p

N), θpN) in the sequence {((ITP p
N), θpN)}N∈N

are consistent approximations for the pairs ((ITP e
cl), θ

e) and ((ITP p
cl), θ

p), respec-

tively.

Theorem III.45. Suppose that Assumptions III.31, III.32, III.33, and III.40 are
satisfied, (ITP e

cl), (ITP p
cl), θe, θp, (ITP e

N), (ITP p
N), θeN , and θpN are defined as in

(III.197), (III.198), (III.177), (III.179), (III.187), (III.189), (III.193), and (III.195),
respectively. Then

(a) the pairs ((ITP e
N), θeN), in the sequence {((ITP e

N), θeN)}N∈N are consistent ap-
proximations for the pair ((ITP e

cl), θ
e), and

(b) the pairs ((ITP p
N), θpN), in the sequence {((ITP p

N), θpN)}N∈N are consistent ap-
proximations for the pair ((ITP pcl), θp).

Proof. The proof follows the same arguments as the proof of Theorem III.20 with

Theorem III.17, Lemma III.6, and Proposition III.18 replaced by Theorem III.42,

Lemma III.35, and Proposition III.44, respectively.

We next show that the pairs ((ITP c,e
N ), θc,eN ) in the sequence

{((ITP c,e
N ), θc,eN )}N∈N and the pairs ((ITP c,p

N ), θc,pN ) in the sequence {((ITP c,p
N ), θc,pN )}N∈N

are consistent approximations for the pairs ((ITP c,e), θc,e) and ((ITP c,p), θc,p), respec-

tively.

Theorem III.46. Suppose that Assumptions III.31, III.32, III.33, and III.40 are sat-
isfied, (ITP c,e), (ITP c,p), θc,e, θc,p, (ITP c,e

N ), (ITP c,p
N ), θc,eN , and θc,pN are defined as in

(III.165), (III.168), (III.178), (III.180), (III.188), (III.190), (III.194),and (III.196),
respectively. Then

(a) the pairs ((ITP c,e
N ), θc,eN ), in the sequence {((ITP c,e

N ), θc,eN )}N∈N are consistent
approximations for the pair ((ITP c,e), θc,e), and

(b) the pairs ((ITP c,p
N ), θc,pN ), in the sequence {((ITP c,p

N ), θc,pN )}N∈N are consistent
approximations for the pair ((ITP c,p), θc,p).
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Proof. The proof follows the same arguments as the proof of Theorem III.21 with

Theorems III.17 and III.20 replaced by Theorems III.42 and III.45, respectively.

b. Time- and Space-Discretized Problems

We next consider the time- and space-discretized problem. We make

use of the integration rule IM given in (III.102) to define the approximate objective

functions ψeNM : HN → R and ψpNM : HN → R for any η ∈ HN , N ∈ N , and

M ∈ N× N by

ψeNM(η) ,
L∑
l=1

IM

(
exp

[
−zη,lN (1; ·)

]
φl(·)

)
, (III.224)

and

ψpNM(η) ,
L∏
l=1

IM

(
exp

[
−zη,lN (1; ·)

]
φl(·)

)
. (III.225)

We next consider the differentiability of ψeNM(·) and ψpNM(·).

Proposition III.47. Suppose that Assumptions III.31, III.32, and III.33 are satis-
fied, N ∈ N , and M ∈ N× N, then for any η ∈ H0

N and δη ∈ H∞,2,

(a) ψeNM(·) has a Gateaux differential DψeNM(η; δη) = 〈∇ψeNM(η), δη〉H2
, where

∇ψeNM(η)(t) =
L∑
l=1

(
IM

[
∇ηf̃

l
N(η; ·)(t)φl(·)

])
, ∀t ∈ [0, 1], (III.226)

and

(b) ψpNM(·) has a Gateaux differential DψpNM(η; δη) = 〈∇ψpNM(η), δη〉H2
, where

∇ψpNM(η)(t) =
L∑
l=1

[
IM

[
∇ηf̃

l
N(η; ·)(t)φl(·)

]] L∏
j=1|j 6=l

IM

[
f̃ jN(η; ·)φj(·)

] ,
∀t ∈ [0, 1]. (III.227)

Proof. The proof of part (a) follows the same arguments used in the proof of Propo-

sition III.22, with f̃(·;α) replaced by f̃ lN(·;αl), and with the recognition that the

Gateaux derivative of a sum is the sum of the Gateaux derivatives. Part (b) follows

in a similar manner, with an application of a product rule for Gateaux derivatives.

Next, we show that∇ψeNM(·) and∇ψpNM(·) are Lipschitz HN -continuous

on bounded subsets of H0
N .
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Lemma III.48. Suppose that Assumptions III.31, III.32, and III.33 are satisfied,
then

(a) the gradient ∇ψeNM(η) is Lipschitz HN -continuous on bounded subsets of H0
N ,

and

(b) the gradient ∇ψpNM(η) is Lipschitz HN -continuous on bounded subsets of H0
N .

Proof. The proof follows the same arguments as the proof of Lemma III.38, with

integration replaced by IM .

For the reasons discussed in Section III.B.3b, in order to conduct the

analysis that follows we again make the assumptions delineated in Assumption III.24.

Based on the choice of Composite Simpson’s rule as the numerical integration scheme,

we find it necessary to show that the partial derivatives of f̃ lN(η; ·)φl(·) and

∇ηf̃
l
N(η; ·)φl(·) up to and including the fourth-order are bounded for any choice of

η ∈ H0
N , any αl ∈ A, and any N ∈ N . The bounding of the partial derivatives

of f̃ lN(η; ·)φl(·) and ∇ηf̃
l
N(η; ·)φl(·) is necessary in order to prove the convergence of

ψeNM(η) to ψe(η), ∇ψeNM(η) to ∇ψe(η), ψpNM(η) to ψp(η), and ∇ψpNM(η) to ∇ψp(η).

To facilitate these proofs we begin by defining some notation. For any η ∈ H0
N ,

αl ∈ A, l = 1, 2, ..., L, N ∈ N , and j = 0, 1, ..., N − 1, we define

ζ l1(αl) , exp

[
−

N−1∑
j=0

1

N

K∑
k=1

rk,l
(
xη,kN

(
j

N

)
, yl
(
j

N
;αl
))]

, (III.228)

ζ l2(αl) , φl(αl), (III.229)

ζ l3(αl) , pη,lN (0;αl), (III.230)

and

ζ l4(αl) , pη,lN

(
j + 1

N
;αl
)
. (III.231)

We again note that ζ l1(·), ζ l3(·), and ζ l4(·), l = 1, 2, ..., L, depend on η and N .

82



We next show that the partial derivatives of ζ l1(·), ..., ζ l4(·) up to and including the

fourth-order are continuous and bounded for any choice of η ∈ H0
N , αl ∈ A, l =

1, 2, ..., L, and N ∈ N .

Lemma III.49. Suppose that Assumptions III.31, III.32, and III.33 are satisfied and
S is a bounded subset of H0

N . Then,

(i) ζ li(·) ∈ C4(A) ∀i = 1, 2, 3, 4,

and

(ii) there exists C < ∞, such that for all η ∈ S, j = 0, 1, ..., N − 1, αl ∈ A,
l = 1, 2, ..., L, and N ∈ N∣∣∣∣∣∂µζ lκ(αl)∂αl,µi

∣∣∣∣∣ ≤ C ∀i = 1, 2,∀µ = 1, 2, 3, 4,∀κ = 1, 2, 3, 4. (III.232)

Proof. The proof follows the same arguments as the proof of Lemma III.25 with

Assumptions III.1, III.2, and III.3 replaced by Assumptions III.31, III.32, and III.33,

respectively.

In order to prove epi-convergence and consistency of approximation, we

will need the following proposition.

Proposition III.50. Suppose that Assumptions III.24, III.31, III.32, and III.33 are
satisfied. Then for every bounded subset S ⊂ H0, there exist constants KΣS < ∞,
KπS < ∞, and KπI1, KπI2 < ∞ such that, for any N ∈ N , for any M ∈ N3 × N3

4,
and η ∈ S ∩HN ,

(a) (i) |ψe(η)− ψeNM(η)| ≤ KΣS

N
+ KπI1

(M1−1)4 + KπI2
(M2−1)4 ,

(ii) ‖∇ψe(η)−∇ψeNM(η)‖H2 ≤ KΣF

N
+ KπI1

(M1−1)4 + KπI2
(M2−1)4 ,

and

(b) (i) |ψp(η)− ψpNM(η)| ≤ KπS
N

+ KπI1
(M1−1)4 + KπI2

(M2−1)4 ,

(ii) ‖∇ψp(η)−∇ψpNM(η)‖H2 ≤ KπF
N

+ KπI1
(M1−1)4 + KπI2

(M2−1)4 ,

and KΣF and KπF are defined as in Proposition III.44.

4Recall that N3 , {m ∈ 2N + 1|m ≥ 3}, as defined previously in Proposition III.26.
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Proof. The proof follows the same arguments as the proof of Proposition III.26 with

Proposition III.18, Lemma III.25, and ζ1(·), ..., ζ4(·) replaced by Proposition III.44,

Lemma III.49, and ζ l1(·), ..., ζ l4(·), respectively.

For any N ∈ N , and M ∈ N×N, we define the following approximating

problems

(ITP e
NM) min

η∈H0
N

ψeNM(η), (III.233)

(ITP c,e
NM) min

η∈Hc,N

ψeNM(η), (III.234)

(ITP p
NM) min

η∈H0
N

ψpNM(η), (III.235)

and

(ITP c,p
NM) min

η∈Hc,N

ψpNM(η). (III.236)

For any N ∈ N , and M ∈ N × N, we define nonpositive optimality

functions θeNM : H0
N → R, θc,eNM : Hc,N → R, θpNM : H0

N → R, and θc,pNM : Hc,N → R

by

θeNM(η) , −1

2
‖∇ψeNM(η)‖2

H2
, (III.237)

θc,eNM(η) , min
η′∈Hc,N

〈∇ψeNM(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.238)

θpNM(η) , −1

2
‖∇ψpNM(η)‖2

H2
, (III.239)

and

θc,pNM(η) , min
η′∈Hc,N

〈∇ψpNM(η), η′ − η〉H2
+

1

2
‖η′ − η‖2

H2
, (III.240)

which characterize stationary points of (ITP e
NM), (ITP c,e

NM), (ITP p
NM), and (ITP c,p

NM),

respectively.
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Proposition III.51. Suppose that Assumptions III.24, III.32, and III.33 are satis-
fied.

(a) θeNM(·), θc,eNM(·), θpNM(·), and θc,pNM(·) are H0
N -continuous functions.

(b) If η̂ ∈ H0
N is a local minimizer of (ITP e

NM), then θeNM(η̂) = 0.

(c) If η̂ ∈ Hc,N is a local minimizer of (ITP c,e
NM), then θc,eNM(η̂) = 0.

(d) If η̂ ∈ H0
N is a local minimizer of (ITP p

NM), then θpNM(η̂) = 0.

(e) If η̂ ∈ Hc,N is a local minimizer of (ITP c,p
NM), then θc,pNM(η̂) = 0.

Proof. The proof follows the same arguments as the proof of Proposition 1.1.6 in

Polak (1997), with the norms and inner products replaced by their H2 equivalents.

It is not possible to establish epi-convergence of (ITP e
NM(N)) to (ITP e)

or (ITP p
NM(N)) to (ITP p), but it is possible to establish epi-convergence of (ITP e

NM(N))

to (ITP e
cl) and (ITP p

NM(N)) to (ITP p
cl). We now show that the family

{((ITP e
NM(N)), θ

e
NM(N))}N∈N is a sequence of consistent approximations for

((ITP e
cl), θ

e), and the family {((ITP p
NM(N)), θ

p
NM(N))}N∈N is a sequence of consistent

approximations for ((ITP p
cl), θ

p) by showing that the conditions of Definition III.2 are

satisfied.

Theorem III.52. Suppose that Assumptions III.28, III.32, III.33, and III.40 are sat-
isfied, (ITP e

cl), (ITP pcl), θe, θp, (ITP e
NM(N)), (ITP p

NM(N)), θeNM(N), and θpNM(N) are

defined as in (III.197), (III.198), (III.177), (III.179), (III.233), (III.235), (III.237),
and (III.239), respectively. Then

(a) the pairs ((ITP e
NM(N)), θ

e
NM(N)), in the sequence {((ITP e

NM(N)), θ
e
NM(N))}N∈N

are consistent approximations for the pair ((ITP e
cl), θ

e), and

(b) the pairs ((ITP p
NM(N)), θ

p
NM(N)), in the sequence {((ITP p

NM(N)), θ
p
NM(N))}N∈N

are consistent approximations for the pair ((ITP p
cl), θ

p).

Proof. The proof follows the same arguments as the proof of Theorem III.29 with

Proposition III.26 and Theorems III.17 and III.20 replaced by Proposition III.50 and

Theorems III.42 and III.45, respectively.

We now show that the pairs ((ITP c,e
NM(N)), θ

c,e
NM(N)) in the sequence

{((ITP c,e
NM(N)), θ

c,e
NM(N))}N∈N are consistent approximations for the pair ((ITP c,e), θc,e).
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We also show that the pairs ((ITP c,p
NM(N)), θ

c,p
NM(N)) in the sequence

{((ITP c,p
NM(N)), θ

c,p
NM(N))}N∈N are consistent approximations for the pair ((ITP c,p), θc,p).

Theorem III.53. Suppose that Assumptions III.28, III.32, III.33, and III.40 are sat-
isfied, (ITP c,e), (ITP c,p), θc,e, θc,p, (ITP c,e

NM(N)), (ITP c,p
NM(N)), θc,eNM(N), and θc,pNM(N)

are defined as in (III.165), (III.168), (III.178), (III.180), (III.234), (III.236), (III.238),
and (III.240), respectively. Then

(a) the pairs ((ITP c,e
NM(N)), θ

c,e
NM(N)), in the sequence {((ITP c,e

NM(N)), θ
c,e
NM(N))}N∈N

are consistent approximations for the pair ((ITP c,e), θc,e), and

(b) the pairs ((ITP c,p
NM(N)), θ

c,p
NM(N)), in the sequence {((ITP c,p

NM(N)), θ
c,p
NM(N))}N∈N

are consistent approximations for the pair ((ITP c,p), θc,p).

Proof. The proof follows the same arguments as the proof of Theorem III.30, with

Theorem III.29 replaced by Theorem III.52.
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IV. RATE OF CONVERGENCE ANALYSIS

A. INTRODUCTION

In this chapter, we develop rate of convergence results by expressing the rate

of convergence in terms of the computational work, rather than the typical number of

iterations or level of discretization. We relate the compuational work to the number

of iterations as well as to the levels of discretization by making computational work

assumptions. This relation allows us to determine a guaranteed rate of convergence

for the error between the objective function evaluated at iterates generated from the

discretized problems and the optimal value of the original problem as a function of the

computational work. Because these results are applicable to a range of approximation

problems, we prefer to develop our results using abstract problems as we did in Section

III.B.3. We again define the infinite-dimensional problem

(P ) min
x∈X

f(x), (IV.1)

where f(·) and X are defined as in Section III.B.3a. For all N,M ∈ N, let fNM :

BN → R̄ be a lower semicontinuous function that approximates f(·) on BN , and let

XN ⊂ BN be an approximation to X, where BN and R̄ are defined as in Section

III.B.3a. We then define the family of finite dimensional approximating problems

(PNM) min
x∈XN

fNM(x), N,M ∈ N . (IV.2)

We note that x is now a decision variable, and it no longer represents the physical state

of the searcher. We also note that the problems (GTP ), (GTP c), (ITP e), (ITP c,e),

(ITP p), and (ITP c,p) discussed in Chapter III are examples of (P ). The problems

(GTPNM), (GTP c
NM), (ITP e

NM), (ITP c,e
NM), (ITP p

NM), and (ITP c,p
NM) discussed in

Chapter III are examples of (PNM) under the assumption that M1 = M2 = M .

Although the examples we provide from Chapter III are all generalized optimal control

problems, it is worth noting that the results of this chapter are applicable to other

types of problems as well. The results may be applicable to approximation problems
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for (P ) that involve a single discretization parameter for the space of decision variables

and two discretization parameters for the objective function.

To solve the infinite-dimensional problem (P ) some form of discretization is

necessary. If, for example, the infinite-dimensional problem takes the form of (GTP )

and N and M represent time and space discretization levels, respectively, then the

discretization in time of the searcher’s dynamics using Euler’s method and approxima-

tion of spatial integration via Simpson’s rule described in Section III.B.3b combined

with a standard nonlinear programming algorithm could be used to find a solution

to (P ). We refer to this type of solution methodology as a discretization algorithm.

In order to solve (P ) using a discretization algorithm, there is a fundamental

trade-off between the level of discretization and the computational work required to

approximately solve the resulting finite-dimensional problem (PNM). A fine level of

N and M discretization ensures that (PNM) approximates (P ), in some sense, with

a high degree of accuracy. The issue with this approach is that the function and

gradient evaluations in (PNM) tend to be expensive, and therefore the computational

work required is high. A lower level of N and M discretization results in a faster

solution time, due to the relatively less expensive function and gradient evaluations,

but at the expense of a less accurate approximation of (P ). It is usually difficult in

practice to effectively manage the trade-off between these diametrically opposed goals

of solution accuracy and computational cost.

In this chapter, we investigate the rate of convergence of a class of discretiza-

tion algorithms as a computing budget tends to infinity. We show that the policy for

selecting N and M discretization levels relative to the size of the available computa-

tional budget influences the rate of convergence of discretization algorithms. We iden-

tify optimal discretization policies, in a specifically defined sense, for discretization

algorithms used to solve the resulting finite-dimensional problems based on finitely,

superlinearly, linearly, and sublinearly convergent optimization algorithms.

Other researchers have examined the rate of convergence for optimization prob-
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lems where discretization is necessary to obtain solutions. Dunn and Sachs (1983)

considers the effect of approximate function and gradient evaluations on the con-

vergence rates of the conditional gradient and projected gradient optimization algo-

rithms. Kelley and Sachs (1986) examines the effect of approximating the Hessian on

the convergence rate of the BFGS-method when it is used to solve discretized opti-

mal control problems. Dupuis and James (1998) presents a method for obtaining rate

of convergence estimates for finite difference approximation schemes for stochastic

and deterministic optimal control problems. The method given in Dupuis and James

(1998) requires some assumption about the smoothness of the objective function be-

ing approximated, which they exploit to obtain sharp rates and in some cases an

expansion of the discretization error in terms of the discretization parameter. Kang

(2008) gives rate of convergence results for the approximate optimal cost computed

when using pseudospectral methods to solve optimal control problems. These studies

all share two important similarities. The first being that the approximation schemes

under consideration are all based on a single discretization parameter, and the sec-

ond being that none of the studies consider the error introduced by the optimization

algorithm in their determination of the rate of convergence.

More recent studies in the Monte Carlo simulation and simulation optimization

literature (see Chen & Shi, 2008 for a summary) deal with how to optimally allocate

a computational budget across different tasks within the simulation and to determine

the resulting rate of convergence of an estimator as the computational budget tends to

infinity. In the stochastic optimization literature, Pasupathy (2010) and Royset and

Szechtman (2011) consider optimization algorithms with sublinear, linear, and super-

linear rates of convergence for use with the sample average approximation approach,

determine optimal policies for allocating a compuational budget between sampling

and optimization, and quantify the associated rate of convergence of the sample av-

erage approximation approach as the computational budget tends to infinity. In the

semi-infinite minimax literature, Royset and Pee (2011) examines the convergence
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rate as the computing budget tends to infinity, and provide allocation polices that

maximize the convergence rate of sublinear, linear, superlinear, and finite algorithms

used to solve semi-infinite minimax problems. Royset and Pee (2011) also examines

the solution of the semi-infinite minimax problem by exponential smoothing algo-

rithms, provides an optimal discretization and smoothing policy, and determines the

corresponding rate of convergence as the computing budget tends to infinity. We note

that the section on smoothing algorithms in Royset and Pee (2011) uses two distinct

discretization parameters. Our approach in this chapter follows the methodology of

Royset and Szechtman (2011) and Royset and Pee (2011). Our analysis is based on

different assumptions, however, and as a result we reach different conclusions.

The organization of this chapter is as follows. We begin by defining terminol-

ogy and presenting our assumptions. Next we consider finite, superlinear, linear, and

sublinear optimization algorithms for solving the finite-dimensional problem (PNM).

For each class of optimization algorithm we give an optimal discretization policy with

corresponding rate of convergence, as the computational budget tends to infinity.

Finally, we state our conclusions.

B. TERMINOLOGY AND ASSUMPTIONS

We begin with some assumptions about (P ) and (PNM).

Assumption IV.1. We assume that the following hold:

(i) The set of optimal solutions X∗ of (P ) is nonempty.

(ii) There exist constants N̄ , M̄ ∈ N, and K ∈ [0,∞) such that

(a) the set of optimal solutions X∗NM of (PNM) is nonempty for all N ≥ N̄ ,
M ≥ M̄ , N,M ∈ N, and

(b) there exist p, q ∈ (0,∞) such that

|f(x)− fNM(x)| ≤ K

Np
+

K

M q
, (IV.3)

for all x ∈ XN , N ≥ N̄ , M ≥ M̄ , and N,M ∈ N.
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If, for example, (PNM) is a generalized optimal control problem of the form defined in

Chapter III, then part (b) of item (ii) holds when (PNM) is solved using an algorithm

that utilizes Euler’s method to approximate the solutions of the differential equations

and approximates spatial integration using Simpson’s rule. In this case p = 1 and

q = 4; see Proposition III.26 and Proposition III.50. We refer to

f(x)− fNM(x) (IV.4)

as the discretization error. Unless XN and fNM(x), x ∈ XN , have special structures, it

is impossible to obtain a globally optimal solution of (PNM) in finite computing time.

Therefore, once a finite number of iterations of an optimization algorithm are applied

to (PNM), there is usually optimization error. Given an optimization algorithm A

for (PNM), let xnNM ∈ XN be the iterate obtained by A following n iterations on

(PNM). We use the notation f ∗NM to denote the optimal value of (PNM) and define

the optimization error as

fNM(xnNM)− f ∗NM . (IV.5)

The rate of decay of the optimization error as n gets larger depends on the rate of

convergence of A when used to solve (PNM). Throughout this dissertation we only

consider deterministic algorithms that generate iterates in X exclusively, which we

formalize in the next assumption.

Assumption IV.2. We assume that if {xnNM}∞n=0, N,M ∈ N, are generated by a
given optimization algorithm when applied to (PNM), then xnNM ∈ X for all N,M ∈ N
and n = 0, 1, 2, ....

Based on the definition of X in Section III.B.3a, many optimization algorithms

satisfy Assumption IV.2. We use the notation f ∗ to denote the optimal value of (P )

and define the total error as

|f(xnNM)− f ∗|, (IV.6)
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which is a measure of the quality of the solution obtained after applying n iterations

of A to (PNM). Based on Assumptions IV.1 and IV.2,

|f(xnNM)− f ∗| = |f(xnNM)− fNM(xnNM) + fNM(xnNM)− f ∗NM − f ∗ + f ∗NM |

≤ K

Np
+

K

M q
+ ∆n

NM(A), (IV.7)

where ∆n
NM(A) is an upper bound on the optimization error after n iterations of

optimization algorithm A are applied to (PNM). In this chapter we consider several

different expressions for ∆n
NM(A) under various assumptions about the optimization

algorithm, and hence also about (PNM). Because it appears difficult to quantify the

rate of convergence of the total error, as in Royset and Pee (2011) we concentrate on

the rate of convergence of its upper bound in (IV.7). From (IV.7), it is clear that the

rate of convergence of that bound gives a guaranteed minimum rate of convergence

of the total error.

Based on (IV.7), it is evident that different choices of N , M , and n may

result in different bounds on the total error. Let b ∈ N be the computational budget

available to apply n iterations of A to (PNM). To make it clear that the choice of

N , M , and n would typically depend on b, we write Nb, Mb, and nb. We refer to

{(nb, Nb,Mb)}∞b=1, with nb, Nb,Mb ∈ N for all b ∈ N, as a discretization policy. A

discretization policy specifies the level of discretization of (P ) as well as the number

of iterations of the optimization algorithm to complete for any computational budget.

If nb, Nb,Mb → ∞, as b → ∞, then based on Assumption IV.1, the bound on the

discretization error vanishes. If we assume that a convergent optimization algorithm

is applied to solve (PNM), then the optimization error and, hence, the corresponding

bound could vanish as well. For a given optimization algorithm A, and n,N,M ∈ N,

we define the total error bound, denoted by e(A, n,N,M), as the right-hand side of

(IV.7) and have

e(A, n,N,M) ,
K

Np
+

K

M q
+ ∆n

NM(A). (IV.8)
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In this chapter, we investigate the rate at which the total error bound e(A, nb, Nb,Mb)

vanishes as b tends to infinity for different discretization policies {(nb, Nb,Mb)}∞b=1 and

optimization algorithmsA. We give optimal discretization policies, which as discussed

in detail below, attain the highest possible rate of convergence of the total error

bound as the computational budget tends to infinity for a given class of optimization

algorithms.

The analysis that follows relies on the following assumption about the com-

putational work needed by an optimization algorithm to complete n iterations on

(PNM).

Assumption IV.3. There exist a σ = σ(A) ∈ (0,∞), a µ = µ(A) ∈ (0,∞), and a
ν = ν(A) ∈ (0,∞) such that the computational work required by a given optimization
algorithm A to complete n ∈ N iterations on (PNM), N,M ∈ N, is no larger than
σnNµM ν.

Assumption IV.3 holds with µ = 1 and ν = 2 if the optimization algorithmA is

a steepest descent method. This is because each iteration of these algorithms requires

the calculation of fNM(x) at the current iterate x ∈ XN , as well as the evaluation

of the gradient ∇fNM(x), which dominates the computational budget. In order to

evaluate the gradient, using problem (GTP c
NM) from Chapter III as an example,

we see from (III.60) that O(N) operations are required to find the physical states,

while (III.61) and (III.73), respectively, indicate that O(NM2) operations are required

to find the information state and adjoint. This leads to an overall computational

complexity of O(NM2) to evaluate ∇fNM(x).

The SQP algorithm in the TOMLAB SNOPT solver (see Gill et al., 2007) also

seems to empirically follow Assumption IV.3 with µ = 1 and ν = 2 when used to solve

(GTP c) with K = 1 and L = 10 using Algorithm V.2, which will be discussed further

in Chapter V, with η̄0 = (π/4, 0 ∈ RN0), target and HVU parameters values given in

Table 6 (except vmax = 60), and searcher and detection rate parameters given in the

k = 1 columns of Tables 7 and 8, respectively. Table 1 shows the computational time

in seconds required to complete five iterations of the SQP algorithm for various values
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of N and M . Table 1 also shows the fitted values for a zero intercept linear regression

done in R, version 2.13.0 (see Team, 2010), for the linear model Y = aNM2. Figure

2 illustrates the close agreement between the actual and fitted values given in Table

1.

Table 1. Actual and fitted computational time in seconds for five iterations of the
SQP algorithm in the TOMLAB SNOPT solver.

Instance N M Actual Fitted

1 16 7 1.854 1.427
2 16 9 2.164 2.359
3 32 7 2.620 2.855
4 32 9 4.176 4.719
5 64 7 4.532 5.709
6 64 9 8.655 9.438
7 128 7 10.152 11.419
8 64 11 13.337 14.099
9 128 9 15.279 18.876
10 128 11 24.154 28.197
11 128 15 42.168 52.433
12 128 17 60.439 67.348
13 256 11 69.144 56.395
14 256 15 102.924 104.866
15 256 17 120.854 134.695
16 512 15 196.666 209.733
17 512 17 289.129 269.390

In some implementations, particularly those involving discretization of opti-

mal control problems using collocation methods, increasing the time discretization

parameter, N , gives rise to a large number of equality constraints. This large number

of equality constraints provides special structure that allows for sparse implementa-

tions where the computational work may grow slowly as N increases. Assumption

IV.3 may account for the slow growth of the computational work in N , by selecting

a value for µ ∈ (0, 1).

Based on Assumption IV.3, as in Royset and Pee (2011), we refer to a dis-

cretization policy {(nb, Nb,Mb)}∞b=1 as asymptotically admissible if σnbN
µ
bM

ν
b /b→ 1,
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Figure 2. Regression fit for Y = aNM2 model.

as b→∞. It is obvious that an asymptotically admissible discretization policy satis-

fies the computational budget in the limit as b tends to infinity. In the next section, we

determine optimal asymptotically admissible discretization policies and correspond-

ing rates of convergence of the total error bound under different assumptions about

the optimization algorithm and, therefore, the optimization error bound ∆n
NM(A).

C. RATE ANALYSIS FOR CLASSES OF ALGORITHMS

From (IV.7) we see that the total error bound consists of discretization and

optimization error bounds. The discretization error bound depends on the discretiza-

tion levels N and M , but not on the optimization algorithm used. The optimization

error bound depends on the rate of convergence of the optimization algorithm used

to solve (PNM). In this section, we consider four cases: First, we assume that the

optimization algorithm solves (PNM) in a finite number of iterations. Second, we
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investigate optimization algorithms with a superlinear rate of convergence towards

an optimal solution of (PNM). Third, we consider linearly convergent optimization

algorithms. Fourth, we deal with sublinearly convergent algorithms.

1. Finite Optimization Algorithm

Suppose that the optimization algorithm used to solve (PNM) is guaranteed to

find an optimal solution in a finite number of iterations, independently of N and M .

We define finitely convergent algorithms based on the following definition adapted

from Royset and Pee (2011). We note that our definitions for superlinearly, linearly,

and sublinearly convergent algorithms are also adapted from Royset and Pee (2011).

Definition IV.1. An optimization algorithmA converges finitely on {(PNM)}∞,∞
N=N̄,M=M̄

when X∗NM is nonempty for N ≥ N̄ , M ≥ M̄ , and there exists a constant n̄ ∈ N such
that for all N ≥ N̄ , M ≥ M̄ , N,M ∈ N, a sequence {xnNM}∞n=0 generated by A when
applied to (PNM) satisfies xnNM ∈ X∗NM for all n ≥ n̄.

No optimization algorithm converges finitely on {(PNM)}∞,∞
N=N̄,M=M̄

without

strong structural assumptions on XN and fNM(·), such as linearity. In this disserta-

tion, we are not concerned with instances of (PNM) that are linear programs, which

may allow for finite convergence. We include this case here to serve as an “ideal” case.

It will be shown below that this case gives an upper bound on the rate of conver-

gence of the total error bound using any optimization algorithm. Based on Definition

IV.1, a finitely convergent optimization algorithm Afinite on {(PNM)}∞,∞
N=N̄,M=M̄

has no

optimization error after performing a large enough number of iterations. We define

∆n
NM(Afinite) , 0 and e(Afinite, n,N,M) , K

Np + K
Mq for n ≥ n̄, N ≥ N̄ , and M ≥ M̄ ,

where K is as in Assumption IV.1 and n̄, N̄ , and M̄ are as in Definition IV.1. The

next theorem gives the rate of convergence of the total error bound for this case.

Theorem IV.4. Suppose that Assumption IV.1 holds and that Afinite is a finitely con-
vergent algorithm on {(PNM)}∞,∞

N=N̄,M=M̄
, with N̄ and M̄ as in Assumption IV.1 and

number of required iterations n̄ as in Definition IV.1. Suppose also that Afinite satis-
fies Assumptions IV.2 and IV.3. If {(nb, Nb,Mb)}∞b=1 is an asymptotically admissible
discretization policy with nb = n̄ for all b ∈ N, then
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lim inf
b→∞

log e(Afinite, nb, Nb,Mb)

log b
≥ − 1

(µ/p+ ν/q)
, (IV.9)

where p and q are as in Assumption IV.1, and µ and ν are as in Assumption IV.3.
Furthermore, if Nb/b

1/(µ+pν/q) → a1 ∈ (0,∞) as b→∞, then

lim inf
b→∞

log e(Afinite, nb, Nb,Mb)

log b
= − 1

(µ/p+ ν/q)
. (IV.10)

Proof. For sufficiently large b, ∆n
NM(Afinite) = 0 and e(Afinite, n,N,M) = K

Np + K
Mq ,

where K is as in Assumption IV.1. Consequently, for sufficiently large b,

log e(Afinite, nb, Nb,Mb) = log

(
K

Np
b

+
K

M q
b

)
(IV.11)

≥ log

(
max

{
K

Np
b

,
K

M q
b

})
= max

{
log

K

Np
b

, log
K

M q
b

}
. (IV.12)

Hence,

log e(Afinite, nb, Nb,Mb)

log b
≥ max

{
−p logNb + logK

log b
,
−q logMb + logK

log b

}
. (IV.13)

We now consider two cases, one for both of the terms inside the max function of

(IV.13) when it is greater than or equal to the other term inside the max function.

Initially, we want the first term to be greater than or equal to the second term.

This will be true if

−p logNb ≥ −q logMb. (IV.14)

We note that (IV.14) implies

M ν
b ≥ N

pν/q
b . (IV.15)
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If we then use the bound on Mν
b obtained from (IV.15), we have that

log e(Afinite, nb, Nb,Mb)

log b
≥ −p logNb + logK

log b

=
−p logNb + logK

log
(

b
σn̄Nµ

b M
ν
b

)
+ log (σn̄Nµ

bM
ν
b )

≥ −p logNb + logK

log
(

b
σn̄Nµ

b M
ν
b

)
+ log(σn̄) + log

(
N

pν+qµ
q

b

)
=

−p+ logK
logNb

log

(
b

σn̄N
µ
b
Mν
b

)
logNb

+ log(σn̄)
logNb

+ pν+qµ
q

. (IV.16)

Next, we consider the case where the second term inside the max function of

(IV.13) is greater than or equal to the first term inside the max function. This will

be true if

−q logMb ≥ −p logNb. (IV.17)

We note that (IV.17) implies

Nµ
b ≥M

qµ/p
b . (IV.18)

If we then use the bound on Nb obtained from (IV.18), we have

log e(Afinite, nb, Nb,Mb)

log b
≥ −q logMb + logK

log b

=
−q logMb + logK

log
(

b
σn̄Nµ

b M
ν
b

)
+ log (σn̄Nµ

bM
ν
b )

≥ −q logMb + logK

log
(

b
σn̄Nµ

b M
ν
b

)
+ log(σn̄) + log

(
M

pν+qµ
p

b

)
=

−q + logK
logMb

log

(
b

σn̄N
µ
b
Mν
b

)
logMb

+ log(σn̄)
logMb

+ pν+qµ
p

. (IV.19)

We now consider
log e(Afinite, nb, Nb,Mb)

log b
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as b → ∞. Since σn̄Nµ
bM

ν
b /b → 1 as b → ∞, we consider two cases: one where at

least one of the parameters Nb or Mb does not increase without bound as b → ∞,

and another where Nb → ∞ and Mb → ∞ as b → ∞. For the first case, at least

one of the parameters Nb or Mb remains finite as b → ∞. Then based on (IV.11),

e(Afinite, nb, Nb,Mb) ∈
(

0, lim supb→∞
K
Np
b

+ K
Mq
b

)
, and we have that

lim inf
b→∞

log e(Afinite, nb, Nb,Mb)

log b
≥ 0 > − 1

(µ/p+ ν/q)
. (IV.20)

For the second case, where both of the parameters Nb and Mb increase without bound

as b→∞, we have that

lim inf
b→∞

log e(Afinite, nb, Nb,Mb)

log b

≥ min

lim inf
b→∞

−p+ logK
logNb

log

(
b

σn̄N
µ
b
Mν
b

)
logNb

+ log(σn̄)
logNb

+ pν+qµ
q

,

lim inf
b→∞

−q + logK
logMb

log

(
b

σn̄N
µ
b
Mν
b

)
logMb

+ log(σn̄)
logMb

+ pν+qµ
p


= min

{
− 1

(µ/p+ ν/q)
,− 1

(µ/p+ ν/q)

}
= − 1

(µ/p+ ν/q)
,

which completes the proof for the first part of the theorem.

Next, let {(nb, Nb,Mb)}∞b=1 be an asymptotically admissible discretization pol-

icy with nb = n̄ satisfying Nb/b
1/(µ+pν/q) → a1 ∈ (0,∞) as b → ∞. For notational

simplification we define

B1 =
Kb

1
µ/p+ν/q

Np
, (IV.21)
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Then, for sufficiently large b, e(Afinite, n,N,M) = K
Np+ K

Mq , and algebraic manipulation

gives

e(Afinite, nb, Nb,Mb)

= B1b
−1

µ/p+ν/q +
K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

= b
−1

µ/p+ν/q

[
B1 +

(
b

σnNµ

)q/ν
M q

Kσq/νnq/νNµq/ν

bq/ν
b

1
µ/p+ν/q

]
. (IV.22)

Algebraic manipulation can be used to show that

b
qµ

µν+pν2/q b−q/νb
1

µ/p+ν/q = b0 = 1. (IV.23)

Then, since σnbN
µ
bM

ν
b /b → 1, the sum of terms in brackets in (IV.22), with n, N ,

and M replaced by n̄, Nb, and Mb, respectively, tends to a constant as b→∞. The

conclusion for the second part of the theorem then follows from (IV.22) after taking

logarithms, dividing by log b, and taking limits.

Theorem IV.4 shows that e(Afinite, nb, Nb,Mb) converges at a rate b−1/(µ/p+ν/q)

under the stated discretization policy. From (IV.8) we see that the total error bound

includes the discretization error bound. This means the total error bound cannot

converge faster than the rate b−1/(µ/p+ν/q) no matter which optimization algorithm is

used.

It would be difficult to implement the asymptotically admissible discretization

policy stated in Theorem IV.4 because n̄ may be unknown. Despite this difficulty,

the rate of convergence obtained in Theorem IV.4 is useful as an upper bound on

the rate that can be achieved by any optimization algorithm, and will be used as a

benchmark for comparison in the case of superlinear, linear, and sublinear algorithms

below.

2. Superlinear Optimization Algorithm

We will now consider superlinearly convergent optimization algorithms. We

define superlinearly convergent algorithms based on the following definition.
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Definition IV.2. An optimization algorithm A converges superlinearly with order
γ ∈ (1,∞) on {(PNM)}∞,∞

N=N̄,M=M̄
when X∗N is nonempty for N ≥ N̄ , M ≥ M̄ , and

there exist constants n̄ ∈ N, c̄ ∈ [0,∞), and ρ ∈ [0, 1) such that c̄1/(γ−1)(fNM(xnNM)−
f ∗NM) ≤ ρ and

fNM
(
xn+1
NM

)
− f ∗NM

[fNM (xnNM)− f ∗NM ]γ
≤ c̄, (IV.24)

for all n ≥ n̄, n ∈ N, N ≥ N̄ , and M ≥ M̄ , N,M ∈ N.

Definition IV.2 requires that the optimization algorithm achieve a superlinear

rate of convergence for sufficiently large n. This is usually the case with γ = 2

for Newtonian methods applied to strongly convex instances of (PNM) with twice

Lipschitz continuously differentiable objective functions. The next lemma gives a

total error bound for a superlinearly convergent algorithm.

Lemma IV.5. Suppose that Assumption IV.1 holds and that Asuper is a superlinearly
convergent algorithm with order γ ∈ (1,∞) on {(PNM)}∞,∞

N=N̄,M=M̄
, with N̄ and M̄ as

in Assumption IV.1. Let {xnNM}∞n=0 be the iterates generated by Asuper when applied
to (PNM), N ∈ N, N ≥ N̄ , M ∈ N, M ≥ M̄ . Suppose also that Asuper satisfies
Assumptions IV.2 and IV.3. Then, there exist constants c ∈ (0, 1), κ ∈ [0,∞), and
n̄ ∈ N such that

f(xnNM)− f ∗ ≤ cγ
n

κ+
K

Np
+

K

M q
, (IV.25)

for all n ≥ n̄, n ∈ N, N ≥ N̄ , N ∈ N, and M ≥ M̄ , M ∈ N, where K, p, and q are
as in Assumption IV.1.

Proof. The proof follows the same arguments as those for the proof of Lemma 1 in

Royset & Pee (2011).

From Lemma IV.5, we adopt the upper bound on the optimization error

∆n
NM(Asuper) , cγ

n

κ (IV.26)

for a superlinearly convergent optimization algorithm Asuper on {(PNM)}∞,∞
N=N̄,M=M̄

,

where c and κ are as in Lemma IV.5. Then for n,N,M ∈ N, we define the total error

bound

e(Asuper, n,N,M) , cγ
n

κ+
K

Np
+

K

M q
. (IV.27)
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The next result shows that if we select a particular discretization policy, then a super-

linearly convergent optimization algorithm results in the same rate of convergence of

the total error bound as a finitely convergent algorithm. Therefore, the policy speci-

fied in the following theorem is optimal in the sense that no other policy guarantees

a better rate of convergence.

Theorem IV.6. Suppose that Assumption IV.1 holds and that Asuper is a superlin-
early convergent algorithm of order γ ∈ (1,∞) on {(PNM)}∞,∞

N=N̄,M=M̄
, with N̄ and

M̄ as in Assumption IV.1. Suppose also that Asuper satisfies Assumptions IV.2 and
IV.3. If {(nb, Nb,Mb)}∞b=1 is an asymptotically admissible discretization policy with

nb log γ

log
(

log b
− log c

) → a1 = 1 and
pq

µq + νp
< 1, (IV.28)

or
nb log γ

log
(

log b
− log c

) → a1 ∈ (1,∞), (IV.29)

and
Nb[

b log γ

σ log( log b
− log c)

] q
µq+νp

→ a2 ∈ (0,∞), (IV.30)

then

lim
b→∞

log e(Asuper, nb, Nb,Mb)

log b
= − 1

(µ/p+ ν/q)
, (IV.31)

where p and q are as in Assumption IV.1, and µ and ν are as in Assumption IV.3.

Proof. For notational simplification we define

B1 = exp

(
log κ+ log c

(
log b

− log c

) n log γ

log( log b
− log c)

)
, (IV.32)

B2 =

K

(
b log γ

σ log( log b
− log c)

) pq
µq+νp

Np
, (IV.33)

and

B3 =

 b log γ

σ log
(

log b
− log c

)


−pq
µq+νp

. (IV.34)
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Algebraic manipulation of (IV.27) gives

e(Asuper, nb, Nb,Mb)

= exp

(
log κ+ γ

n log γ

log( log b
− log c)

logγ( log b
− log c)

log c

)
+B2B3 +

K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

= B1 +B2B3 +
K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

= B3

B1

B3

+B2 +

( b
σnNµ )

q/ν

Mq
Kσq/νnq/νNµq/ν

bq/ν

B3

 . (IV.35)

We now focus on the following portion of the first term inside the square

brackets in (IV.35),

B1b
pq

µq+νp = κ exp

(
log c

(
log b

− log c

) n log γ

log( log b
− log c)

)
b

pq
µq+νp (IV.36)

To simplify the analysis, we take the logarithm and obtain

log κ+ log c

(
log b

− log c

) n log γ

log( log b
− log c) +

pq

µq + νp
log b

= log κ+ log b

 log c

(− log c)

n log γ

log( log b
− log c)

(log b)

n log γ

log( log b
− log c)

−1

+
pq

µq + νp

 . (IV.37)

Since σnbN
µ
bM

ν
b /b→ 1,

nb log γ

log
(

log b
− log c

) → a1,

Nb[
b log γ

σ log( log b
− log c)

] q
µq+νp

→ a2,

and, due to the facts that log c < 0 and a1 = 1 and pq
µq+νp

< 1 or a1 ∈ (1,∞), the

expression in (IV.37) goes to −∞, as b→∞, we see that the sum of terms in brackets

in (IV.35), with n, N , and M replaced by nb, Nb, and Mb, respectively, tends to a

constant as b→∞. The conclusion then follows from (IV.35) after taking logarithms,

dividing by log b, and taking limits.
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While no discretization policy can guarantee a rate of convergence better than

b−1/(µ/p+ν/q), it is possible to do worse. If, for example, {(nb, Nb,Mb)}∞b=1 is an asymp-

totically admissible discretization policy with

nb
b1/2
→ a1 = 1 and

pq

µq + νp
< 1, (IV.38)

or
nb
b1/2
→ a1 ∈ (1,∞), (IV.39)

and
Nb[

b1/2

σ

] q
µq+νp

→ a2 ∈ (0,∞), (IV.40)

then it can be shown using arguments similar to those used in the proof of Theorem

IV.6 that

lim
b→∞

log e(Asuper, nb, Nb,Mb)

log b
= − 1(

2µ
p

+ 2ν
q

) , (IV.41)

which is worse than the optimal rate by a factor of two.

3. Linear Optimization Algorithm

We now consider linearly convergent optimization algorithms. We define lin-

early convergent algorithms based on the following definition.

Definition IV.3. An optimization algorithmA converges linearly on {(PNM)}∞,∞
N=N̄,M=M̄

when X∗N is nonempty for N ≥ N̄ , M ≥ M̄ and there exist constants n̄ ∈ N and
c̄ ∈ (0, 1) such that

fNM
(
xn+1
NM

)
− f ∗NM

fNM (xnNM)− f ∗NM
≤ c̄, (IV.42)

for all n ≥ n̄, n ∈ N, N ≥ N̄ , N ∈ N, and M ≥ M̄ , M ∈ N.

Definition IV.3 slightly extends a standard definition of linear convergence to

require that the rate of convergence coefficient holds for all N and M sufficiently large.

This is satisfied by many gradient methods, such as the steepest descent method and

projected gradient method, when applied to (PNM) under the assumption that the
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objective function is strongly convex and twice continuously differentiable and that

X is convex. The next lemma gives a total error bound for a linearly convergent

algorithm.

Lemma IV.7. Suppose that Assumption IV.1 holds and that Alinear is a linearly
convergent algorithm on {(PNM)}∞,∞

N=N̄,M=M̄
, with N̄ and M̄ as in Assumption IV.1.

Let {xnNM}∞n=0 be the iterates generated by Alinear when applied to (PNM), N ∈ N,
N ≥ N̄ , M ∈ N, M ≥ M̄ . Suppose also that there exists a constant C ∈ R such that
fNM(xnN) ≤ C for all n ∈ N, N ≥ N̄ , N ∈ N, and M ≥ M̄ , M ∈ N, and that Alinear

satisfies Assumption IV.2. Then, there exists a constant κ ∈ [0,∞) such that

f(xnNM)− f ∗ ≤ c̄nκ+
K

Np
+

K

M q
, (IV.43)

for all n ≥ n̄, N ≥ N̄ , and M ≥ M̄ , where c̄ and n̄ are as in Definition IV.3, and
K, p, and q are as in Assumption IV.1.

Proof. Based on Assumption IV.1 and the fact that Alinear is linearly convergent, we

obtain that

|f(xnNM)− f ∗| ≤ fNM(xnNM) +
K

Np
+

K

M q
− f ∗NM

≤ c̄n−n̄ [fNM(xn̄NM)− f ∗NM ] +
K

Np
+

K

M q

≤ c̄n
(
c̄−n̄

(
C − f ∗ +

K

N̄p
+

K

M̄ q

))
+

K

Np
+

K

M q
. (IV.44)

Hence, the results hold with κ = c̄−n̄
(
C − f ∗ + K

N̄p + K
M̄q

)
.

From Lemma IV.7, we adopt the upper bound on the optimization error

∆n
NM(Alinear) , c̄nκ, (IV.45)

for a linearly convergent optimization algorithm Alinear on {(PNM)}∞,∞
N=N̄,M=M̄

, where

c̄ and κ are as in Lemma IV.7. Then for n,N,M ∈ N, we define the total error bound

e(Alinear, n,N,M) , c̄nκ+
K

Np
+

K

M q
. (IV.46)

The next result shows that if we select a particular discretization policy, then a

linearly convergent optimization algorithm can also attain the best possible rate of

convergence of the total error bound given in Theorems IV.4 and IV.6.
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Theorem IV.8. Suppose that Alinear satisfies the assumptions of Lemma IV.7 and, in
addition, Assumption IV.3 holds. If {(nb, Nb,Mb)}∞b=1 is an asymptotically admissible
discretization policy with

−nb log c̄

log b
→ a1 ∈

[
pq

µq + νp
,∞
)
, (IV.47)

and
Nb[

−b log c̄
σ log b

] q
µq+νp

→ a2 ∈ (0,∞), (IV.48)

where c̄ is as in Definition IV.3, p and q are as in Assumption IV.1, and µ and ν are
as in Assumption IV.3, then

lim
b→∞

log e(Alinear, nb, Nb,Mb)

log b
= − 1

µ/p+ ν/q
. (IV.49)

Proof. For notational simplification we define

B1 =
K
[
−b log c̄
σ log b

] pq
µq+νp

Np
, (IV.50)

and

B2 =

(
−b log c̄

σ log b

) −pq
µq+νp

. (IV.51)

Algebraic manipulation of (IV.46) gives

e(Alinear, nb, Nb,Mb)

= exp

(
log κ+

−n log c̄

log b

log b

− log c̄
log c̄

)
+B1B2 +

K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

= exp

(
log κ+

n log c̄

log b
log b

)
+B1B2 +

K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

=
κ

b
−n log c̄

log b

+B1B2 +
K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

= B2

[
κ

B2b
−n log c̄

log b

+B1 +

(
b

σnNµ

)q/ν
B2M q

Kσq/νnq/νNµq/ν

bq/ν

]
. (IV.52)

Since
−nb log c̄

log b
→ a1 ∈ [

pq

µq + νp
,∞),
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the expression
κ

B2b
−n log c̄

log b

(IV.53)

goes to 0, as b→∞. In addition, we know that σnbN
µ
bM

ν
b /b→ 1, and

Nb[
−b log c̄
σ log b

] q
µq+νp

→ a2,

as b → ∞. Consequently, the sum of terms in brackets in (IV.52), with n, N , and

M replaced by nb, Nb, and Mb, respectively, tends to a constant as b → ∞. The

conclusion then follows from (IV.52) after taking logarithms, dividing by log b, and

taking limits.

4. Sublinear Rate of Convergence

Next we consider sublinearly convergent optimization algorithms. We define

sublinearly convergent algorithms based on the following definition.

Definition IV.4. An optimization algorithm A converges sublinearly with degree
γ ∈ (0,∞) on {(PNM)}∞,∞

N=N̄,M=M̄
when X∗N is nonempty for N ≥ N̄ , M ≥ M̄ and

there exists a constant C ∈ [0,∞) such that

fNM (xnNM)− f ∗NM ≤
C

nγ
, (IV.54)

for all n ∈ N, N ≥ N̄ , N ∈ N, and M ≥ M̄ , M ∈ N.

The subgradient method is sublinearly convergent in the sense of Definition

IV.4 with γ = 1/2 and C = DXLf when (PNM) is convex, where DX is the diameter of

XN and Lf is a Lipschitz constant of fNM(·) on X; see Nesterov (2004), pp. 142-143.

Based on Definition IV.4, we define the optimization error bound for a sublinearly

convergent optimization algorithm Asublin by

∆n
NM(Asublin) ,

C

nγ
, (IV.55)

and the total error bound for n,N,M ∈ N by

e(Asublin, n,N,M) ,
C

nγ
+

K

Np
+

K

M q
. (IV.56)
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The next theorem gives an optimal discretization policy for a sublinearly convergent

optimization algorithm as well as its corresponding rate of convergence of the total

error bound.

Theorem IV.9. Suppose that Assumption IV.1 holds and that Asublin is a sublinearly
convergent algorithm with degree γ ∈ (0,∞) on {(PNM)}∞,∞

N=N̄,M=M̄
, with N̄ and M̄ as

in Assumption IV.1. Suppose also that Asublin satisfies Assumptions IV.2 and IV.3,
and that {(nb, Nb,Mb)}∞b=1 is an asymptotically admissible discretization policy. Then,

lim
b→∞

log e(Asublin, nb, Nb,Mb)

log b
≥ − 1

1
γ

+ µ
p

+ ν
q

, (IV.57)

where γ is as in Definition IV.4, p and q are as in Assumption IV.1, and µ and ν
are as in Assumption IV.3.

Furthermore, if nb/b
1/(µγ/p+νγ/q+1) → a1 ∈ (0,∞) and

Nb(
b
µγ/p+νγ/q
µγ/p+νγ/q+1

σ

) q
µq+νp

→ a2 ∈ (0,∞), (IV.58)

as b→∞, then

lim
b→∞

log e(Asublin, nb, Nb,Mb)

log b
= − 1

1
γ

+ µ
p

+ ν
q

. (IV.59)

Proof. For any n,N,M ∈ N,

log e(Asublin, n,N,M) = log

(
C

nγ
+

K

Np
+

K

M q

)
(IV.60)

≥ log

(
max

{
C

nγ
,
K

Np
,
K

M q

})
= max

{
log c− γ log n, log

K

Np
, log

K

M q

}
. (IV.61)

Hence,

log e(Asublin, n,N,M)

log b

≥ max

{
−γ log n+ logC

log b
,
−p logN + logK

log b
,
−q logM + logK

log b

}
. (IV.62)

We now consider three cases, one for each of the three terms inside the max function

of (IV.62) when it is greater than or equal to the other two terms inside the max

function.
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Initially, we want the first term to be the greater than or equal to the other

two terms. This will be true if

−γ log nb ≥ −p logNb (IV.63)

and

−γ log nb ≥ −q logMb. (IV.64)

We note that (IV.63) implies

Nµ
b ≥ n

µγ/p
b , (IV.65)

and (IV.64) implies

M ν
b ≥ n

γν/q
b . (IV.66)

If we then use the bounds on Nµ
b and M ν

b obtained from (IV.65) and (IV.66), respec-

tively, we have that

log e(Asublin, n,N,M)

log b
≥ −γ log nb + logC

log b

=
−γ log nb + logC

log
(

b
σnbN

µ
b M

ν
b

)
+ log (σnbN

µ
bM

ν
b )

≥ −γ log nb + logC

log
(

b
σnbN

µ
b M

ν
b

)
+ log σ + log

(
n
pq+qµγ+pνγ

pq

b

)
=

−γ + logC
lognb

log

(
b

σnbN
µ
b
Mν
b

)
lognb

+ log σ
lognb

+ pq+qµγ+pνγ
pq

. (IV.67)

We now consider the case where the second term inside the max function of

(IV.62) is greater than or equal to the other two terms. This will be true if

−p logNb ≥ −γ log nb, (IV.68)

and

−p logNb ≥ −q logMb. (IV.69)

We note that (IV.68) implies

nb ≥ N
p/γ
b , (IV.70)
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and (IV.69) implies

M ν
b ≥ N

pν/q
b . (IV.71)

If we then use the bounds on nb and Mν
b obtained from (IV.70) and (IV.71), respec-

tively, we have that

log e(Asublin, n,N,M)

log b
≥ −p logNb + logK

log b

=
−p logNb + logK

log
(

b
σnbN

µ
b M

ν
b

)
+ log (σnbN

µ
bM

ν
b )

≥ −p logNb + logK

log
(

b
σnbN

µ
b M

ν
b

)
+ log σ + log

(
N

pq+qµγ+pνγ
qγ

b

)
=

−p+ logK
logNb

log

(
b

σnbN
µ
b
Mν
b

)
logNb

+ log σ
logNb

+ pq+qµγ+pνγ
qγ

. (IV.72)

Finally, we consider the case where the third term inside the max function of

(IV.62) is greater than or equal to the other two terms. This will be true if

−q logMb ≥ −γ log nb, (IV.73)

and

−q logMb ≥ −p logNb. (IV.74)

We note that (IV.73) implies

nb ≥M
q/γ
b , (IV.75)

and (IV.74) implies

Nµ
b ≥M

qµ/p
b . (IV.76)
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If we then use the bounds on nb and Nµ
b obtained from (IV.75) and (IV.76), respec-

tively, we have that

log e(Asublin, n,N,M)

log b
≥ −q logMb + logK

log b

=
−q logMb + logK

log
(

b
σnbN

µ
b M

ν
b

)
+ log (σnbN

µ
bM

ν
b )

≥ −q logMb + logK

log
(

b
σnbN

µ
b M

ν
b

)
+ log σ + log

(
M

pq+qµγ+pνγ
pγ

b

)
=

−q + logK
logMb

log

(
b

σnbN
µ
b
Mν
b

)
logMb

+ log σ
logMb

+ pq+qµγ+pνγ
pγ

. (IV.77)

We now consider
log e(Asublin, nb, Nb,Mb)

log b
,

as b → ∞. Since σnbN
µ
bM

ν
b /b → 1, as b → ∞, we consider two cases: one where at

least one of the parameters nb, Nb, or Mb does not increase without bound as b→∞,

and another where nb →∞, Nb →∞ and Mb →∞, as b→∞. For the first case, at

least one of the parameters nb, Nb, or Mb remains finite as b → ∞. Then based on

(IV.60), e(Asublin, nb, Nb,Mb) ∈
(

0, lim supb→∞
C
nγb

+ K
Np
b

+ K
Mq
b

)
, and we have that

lim inf
b→∞

log e(Asublin, nb, Nb,Mb)

log b
≥ 0 > − 1

1
γ

+ µ
p

+ ν
q

. (IV.78)

For the second case, where all three of the parameters nb, Nb, and Mb increase without

bound as b→∞, we have that

lim inf
b→∞

log e(Asublin, nb, Nb,Mb)

log b

≥ min

lim inf
b→∞

−γ + logC
lognb

log

(
b

σnbN
µ
b
Mν
b

)
lognb

+ log σ
lognb

+ pq+qµγ+pνγ
pq

,
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lim inf
b→∞

−p+ logK
logNb

log

(
b

σnbN
µ
b
Mν
b

)
logNb

+ log σ
logNb

+ pq+qµγ+pνγ
qγ

, lim inf
b→∞

−q + logK
logMb

log

(
b

σnbN
µ
b
Mν
b

)
logMb

+ log σ
logMb

+ pq+qµγ+pνγ
pγ


= min

{
− 1

1
γ

+ µ
p

+ ν
q

,− 1
1
γ

+ µ
p

+ ν
q

,− 1
1
γ

+ µ
p

+ ν
q

}
= − 1

1
γ

+ µ
p

+ ν
q

. (IV.79)

Which completes the proof for the first part of the theorem.

Next, let {(nb, Nb,Mb)}∞b=1 be an asymptotically admissible discretization pol-

icy satisfying nb/b
1/(µγ/p+νγ/q+1) → a1 ∈ (0,∞) and

Nb(
b
µγ/p+νγ/q
µγ/p+νγ/q+1

σ

) q
µq+νp

→ a2 ∈ (0,∞), (IV.80)

as b→∞. For notational simplification we define

B1 =
Cb

γ
µγ
p +

νγ
q +1

nγ
, (IV.81)

B2 =

K

 b µγ
p +

νγ
q

µγ
p +

νγ
q +1

σ


pq

µq+νp

Np
, (IV.82)

and

B3 =

b
µγ
p +

νγ
q

µγ
p +

νγ
q +1

σ


−pq
µq+νp

. (IV.83)

Then, algebraic manipulation of (IV.56) gives

e(Asublin, nb, Nb,Mb)

= B1b
−γ

µγ
p +

νγ
q +1 +B2B3 +

K(
b

σnNµ

)q/ν
(

b
σnNµ

)q/ν
M q

= B3

[
B1

B3

b
−γ

µγ
p +

νγ
q +1 +B2 +

(
b

σnNµ

)q/ν
B3M q

Kσq/νnq/νNµq/ν

bq/ν

]
. (IV.84)
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Algebraic manipulation can be used to show that

b

µγ
p +

νγ
q

µγ
p +

νγ
q +1

pq
µq+νp

b
−γ

µγ
p +

νγ
q +1 = b0 = 1, (IV.85)

and

b
q/ν

µγ
p +

νγ
q +1 b

µγ
p +

νγ
q

µγ
p +

νγ
q +1

µq2

µqν+ν2p b−q/νb

µγ
p +

νγ
q

µγ
p +

νγ
q +1

pq
µq+νp

= b0 = 1. (IV.86)

Then, since σnbN
µ
bM

ν
b /b → 1, the sum of terms in brackets in (IV.84), with n, N ,

and M replaced by nb, Nb, and Mb, respectively, tends to a constant as b→∞. The

conclusion for the second part of the theorem then follows from (IV.84) after taking

logarithms, dividing by log b, and taking limits.

Based on Theorem IV.9, the rate of convergence of the total error bound for a

sublinearly convergent optimization algorithm is worse than that which is achievable

by finite, superlinear, and linear algorithms (see Theorems IV.4, IV.6, and IV.8),

even when the optimal discretization policy given in the second part of the theorem

is used. We also note that if γ tends to infinity, then the rate for the sublinear case,

when the optimal discretization policy is used, tends to that of the finite, superlinear,

and linear cases as it should.

D. CONCLUSIONS

In this chapter, we consider the rate of convergence of a bound on the error

between the objective function evaluated at iterates generated from the discretized

problems and the optimal value of the original problem as a computational budget

b tends to infinity. We see that in the case of superlinear and linear optimization

algorithms, the best possible rate of convergence is b−1/(µ/p+ν/q), where µ and ν are

positive parameters related to the computational work per iteration in the optimiza-

tion algorithms, and p and q are positive parameters related to the error in the

numerical methods used to construct the finite-dimensional problems. We identify

specific optimal discretization policies for both the superlinear and linear cases that

achieve this best possible rate. It is impossible to improve upon this rate due to
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the fact that there is always some level of discretization error. If other discretization

policies are utilized, it is possible that they will result in substantially slower rates of

convergence. For sublinear optimization algorithms, with optimization error bounded

by C/nγ, C ≥ 0, γ > 0, after n iterations, the best possible rate of convergence is

b−1/(1/γ+µ/p+ν/q). This rate is slower than what can be achieved with either a super-

linear or linear optimization algorithm. The optimal discretization policy specified

in Section IV.C.4 achieves the rate b−1/(1/γ+µ/p+ν/q). Table 2 gives a summary of the

results for the different optimization algorithms we consider in this chapter.

Table 2. Comparison for optimization algorithms.
Optimization Algorithm Asymptotic rate of decay of error bound

Finite b
−1

µ/p+ν/q

Superlinear b
−1

µ/p+ν/q (with optimal policy)

Linear b
−1

µ/p+ν/q (with optimal policy)

Sublinear b
−1

1/γ+µ/p+ν/q (with optimal policy)

The results from this chapter provide insight regarding the type of numeri-

cal method used to solve the differential equations when implementing a discretiza-

tion algorithm to solve one of the generalized optimal control problems discussed in

Chapter III. If a linear or superlinear optimization algorithm A is used to solve the

finite-dimensional optimal control problems, with Euler’s method used to numerically

approximate the solution of the differential equations and Simpson’s rule used to nu-

merically approximate the spatial integration, then p = 1 and q = 4 and we have

e(A, n,N,M) = ∆n
NM(A) + K

N
+ K

M4 . If we assume that Assumption IV.3 holds for

the reasons discussed in Section IV.B with µ = 1 and ν = 2, then the best possible

rate of convergence is b−2/3.

If a Runge-Kutta algorithm is used instead of Euler’s method to numerically

solve the differential equations, it is clear from an analysis of Runge-Kutta algorithms

(see, for example, Nagle & Saff, 1989 pp. 133-134) that although additional function

and gradient evaluations are required, Assumption IV.3 could still hold with µ = 1
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and ν = 2. If a second-order Runge-Kutta method is used instead of Euler’s method

to numerically solve the differential equations, then p = 2 and q = 4 and we have

e(A, n,N,M) = ∆n
NM(A) + K

N2 + K
M4 . The resulting best possible rate of convergence

is then b−1. If a fourth-order Runge-Kutta method is used instead of Euler’s method

to numerically solve the differential equations, then p = 4 and q = 4 and we have

e(A, n,N,M) = ∆n
NM(A) + K

N4 + K
M4 . The best possible rate of convergence is then

b−4/3.

In order to establish an upper bound for the type of numerical method used

to solve the differential equations, we let p → ∞. Then we have e(A, n,N,M) =

∆n
NM(A) + K

M4 . If we assume that Assumption IV.3 still holds with µ = 1 and ν = 2,

then the best possible rate of convergence is b−2. The analysis of this chapter therefore

indicates that higher-order methods such as Runge-Kutta or pseudo-spectral may lead

to better overall performance. However, this potential improvement in performance

comes at the cost of additional complications in both the theory and implementation.

We can also establish an upper bound for the type of numerical integration

method used to evaluate the spatial integration if we let q → ∞. Then we have

e(A, n,N,M) = ∆n
NM(A) + K

Np . If we assume that Assumption IV.3 still holds with

µ = 1 and ν = 2, then the best possible rate of convergence is b−p. The value of p

depends on the choice of numerical method used to solve the differential equations,

with p = 1 for Euler’s method, p = 2 for a second-order Runge-Kutta method, and

p = 4 for a fourth-order Runge-Kutta method. Table 3 gives a summary of the

results for the different numerical methods used to solve the differential equations

and evaluate the spatial integration.

The last row in Table 3 gives the asymptotic rate of decay of the error bound

assuming “Ideal” methods are used to solve the differential equations as well as eval-

uate the spatial integration. The term “Ideal” method means we let p → ∞ and

q →∞. Then we have e(A, n,N,M) = ∆n
NM(A). There is no benefit associated with
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increasing N or M , so b = n and the resulting asymptotic rates are cγ
b

and c̄b for

superlinear and linear optimization algorithms, respectively.

Table 3. Comparison for numerical methods used to solve differential equations and
evaluate the spatial integration. The optimization algorithm can be finitely, super-
linearly, or linearly convergent. The last row in the table gives the asymptotic rate
of decay of the error bound assuming “Ideal” methods are used to solve the differ-
ential equations as well as evaluate the spatial integration. The rates given are for a
superlinear optimization algorithm with order γ ∈ (1,∞) and c ∈ (0, 1), and a linear
optimization algorithm with rate constant c̄ ∈ (0, 1).

Numerical Method for Numerical Method for Asymptotic rate of
Differential Equations Spatial Integration decay of error bound

Euler Simpson b
−2
3

2nd Order Runge-Kutta Simpson b−1

4th Order Runge-Kutta Simpson b
−4
3

“Ideal” p→∞ Simpson b−2

Euler “Ideal” q →∞ b−1

2nd Order Runge-Kutta “Ideal” q →∞ b−2

4th Order Runge-Kutta “Ideal” q →∞ b−4

“Ideal” p→∞ “Ideal” q →∞ cγ
b

or c̄b

We leave verification of the theoretical rate of convergence results developed

in this chapter via numerical examples for future work. We note that this verification

will be challenging due to the fact that it will be difficult to determine what the

optimal value of the objective function should be for the problems under considera-

tion. The theoretical results of this chapter are still useful, however, as they provide

insight regarding the choice of numerical methods for approximately solving the dif-

ferential equations and approximating the spatial integrals as well as the optimization

algorithms that can be utilized to implement a discretization algorithm that solves a

generalized optimal control problem.
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V. ALGORITHMS AND NUMERICAL

RESULTS

This chapter bridges the gap between the theory developed in Chapter III and

implementable algorithms that can be used to solve the problems (GTP ), (GTP c),

(GTP e), (GTP c,e), (ITP e), (ITP c,e), (ITP p), and (ITP c,p). Again, for the sake

of brevity we omit explicit treatment of the problems (GTP e) and (GTP c,e) in this

chapter. The results developed in this chapter for (ITP e) and (ITP c,e) can again

be trivially extended to include (GTP e) and (GTP c,e), respectively, with αl replaced

by α and φl(·) replaced by φ(·). In Section V.A, we discuss problems defined on a

real Euclidean space of coefficients needed to construct implementable algorithms,

followed by a statement of the algorithms and their proofs of convergence, where

appropriate. Then, in Section V.B.1, we use one of these algorithms, with a fixed

discretization scheme, to solve an instance of (GTP c). This solution is then used to

derive operational insights on how to better defend a HVU against an attack from a

collection of small boat adversaries. We also give examples of numerical solutions to

instances of (ITP c,e) and (ITP c,p) using fixed discretization schemes. In an effort to

develop faster solution methods, in Section V.B.2 we use an algorithm with an adap-

tive precision-adjustment scheme to solve (GTP c) and compare the results acheived to

those obtained using different fixed discretization schemes. Finally, in Section V.B.3,

we compare three heuristic methods designed for use onboard unmanned systems to

provide solutions to (GTP c) in real time.

A. IMPLEMENTABLE ALGORITHMS

The approximating problems (GTPNM), (GTP c
NM), (ITP e

NM), (ITP c,e
NM),

(ITP p
NM), and (ITP c,p

NM) in Chapter III were all defined using the function space HN .

We would like to use existing nonlinear programming algorithms to solve these ap-

proximating generalized optimal control problems. The issue with using these existing
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algorithms is that they are defined only on real Euclidean spaces. For this reason,

we need to define equivalent problem formulations in a corresponding real Euclidean

space of coefficients that we can use to calculate numerical solutions. Equivalence is

based on correspondence between solutions as in sections 4.3 and 5.6 of Polak (1997).

We adopt the notation used in sections 4.3 and 5.6 of Polak (1997) to define these

problems, and mirror the development found on pages 722-723 of Polak (1997) in this

section.

If we let ej denote the jth unit vector in Rm, then the functions ejπN,κ(·),

j = 1, ...,m, κ = 0, ..., N − 1, with πN,κ defined as in (III.54), form an orthonormal

basis for the subspace LN defined in (III.55). This means that HN is in one-to-one

correspondence with the real Euclidean space

H̄N , Rn × RmN . (V.1)

The elements of H̄N are η̄ = (ξ, ū), with ξ ∈ Rn and ū = (ū0, ū1, ..., ūN−1) ∈ Rm×Rm×

...×Rm. Because HN is in one-to-one correspondence with H̄N , any η = (ξ, u) ∈ HN ,

with u(·) =
∑N−1

κ=0 ūκπN,κ(·), corresponds to a unique η̄ = (ξ, ū) ∈ H̄N , with ū split

into N , m-dimensional blocks ū = (ū0, ū1, ..., ūN−1). Then for any N ∈ N , we define

the linear, invertible maps WN : HN → H̄N by

WN

(
ξ,
N−1∑
κ=0

ūκπN,κ(·)

)
, (ξ, (ū0, ū1, ..., ūN−1)) . (V.2)

For any η, η′ ∈ HN and η̄ = WN(η), η̄′ = WN(η′),

〈η, η′〉H2
= 〈ξ, ξ′〉+

∫ 1

0

〈u(t), u′(t)〉 dt

= 〈ξ, ξ′〉+
1

N

N−1∑
κ=0

〈√
Nūκ,

√
Nū′κ

〉
= 〈ξ, ξ′〉+

N−1∑
κ=0

〈ūκ, ū′κ〉 , 〈η̄, η̄′〉H̄N , (V.3)

where 〈·, ·〉 denotes the Euclidean inner product on Rm and 〈·, ·〉H̄N denotes the Eu-

clidean inner product on H̄N . Which means for any η ∈ HN and η̄ = WN(η),

‖η‖2
H2

= 〈η, η〉H2
= ‖η̄‖2

H̄N
= 〈η̄, η̄〉H̄N . (V.4)
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This shows that WN(·) is a norm-preserving, or isometric, map whose adjoint is

W−1
N (·), which means given any η ∈ HN and η̄ ∈ H̄N ,

〈η̄,WN(η)〉H̄N =
〈
W−1
N (η̄) , η

〉
HN

. (V.5)

Given an η̄ = (ξ, ū) ∈ H̄N , if we let η = W−1
N (η̄), then (III.60) defines the

sequence of vectors x̄kN ,
{
x̄η̄,kN (j)

}N
j=0

in Rn, for all k = 1, 2, ..., K, by the recursion

x̄η̄,kN ((j + 1)/N)− x̄η̄,kN (j/N) =
1

N
hk
(
x̄η̄,kN (j/N),

√
Nūk(j/N)

)
,

j ∈ {0, 1, ..., N − 1} , x̄η̄N(0) = ξ. (V.6)

Similarly, (III.61) and (III.181) define the sequence of vectors z̄N ,
{
z̄η̄N(j;α)

}N
j=0
∈ R

and z̄lN ,
{
z̄η̄,lN (j;αl)

}N
j=0
∈ R by the recursions

z̄η̄N ((j + 1)/N ;α)− z̄η̄N (j/N ;α) =
1

N

K∑
k=1

L∑
l=1

rk,l
(
x̄η̄,kN (j/N), yl (j/N ;α)

)
,

j ∈ {0, 1, ..., N − 1} , z̄η̄N(0;α) = 0, (V.7)

and

z̄η̄,lN
(
(j + 1)/N ;αl

)
− z̄η̄,lN

(
j/N ;αl

)
=

1

N

K∑
k=1

rk,l
(
x̄η̄,kN (j/N), yl

(
j/N ;αl

))
,

j ∈ {0, 1, ..., N − 1} , z̄η̄,lN (0;αl) = 0, (V.8)

respectively.

Using the discretized “information state” given by the recursion (V.7), we

define the approximate objective functions f̄NM : H̄N → R for any η̄ ∈ H̄N and

N ∈ N by

f̄NM(η̄) , IM
(
exp

[
−z̄η̄N(1; ·)

]
φ(·)

)
, (V.9)

and the corresponding discrete generalized optimal control problems by

(GTPNM) min
η̄∈H̄N

f̄NM(η̄), (V.10)
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and

(GTP
c

NM) min
η̄∈H̄c,N

f̄NM(η̄), (V.11)

where

H̄c,N , Rn ×
{
ū = (ū0, ū1, ..., ūN−1) ∈ RmN |ūj ∈ U, j ∈ {0, 1, ..., N − 1}

}
, (V.12)

with U as in (III.9).

Similarly, using the discretized “information state” given by the recursion

(V.8), we define the approximate objective functions ψ
e

NM : H̄N → R and ψ
p

NM :

H̄N → R for any η̄ ∈ H̄N and N ∈ N by

ψ
e

NM(η̄) ,
L∑
l=1

IM

(
exp

[
−z̄η̄,lN (1; ·)

]
φl(·)

)
, (V.13)

and

ψ
p

NM(η̄) ,
L∏
l=1

IM

(
exp

[
−z̄η̄,lN (1; ·)

]
φl(·)

)
. (V.14)

We define the corresponding discrete generalized optimal control problems by

(ITP
e

NM) min
η̄∈H̄N

ψ
e

NM(η̄), (V.15)

(ITP
c,e

NM) min
η̄∈H̄c,N

ψ
e

NM(η̄), (V.16)

(ITP
p

NM) min
η̄∈H̄N

ψ
p

NM(η̄), (V.17)

and

(ITP
c,p

NM) min
η̄∈H̄c,N

ψ
p

NM(η̄). (V.18)

Based on Exercise 4.3.7 in Polak (1997), the problems (GTPNM), (GTP
c

NM),

(ITP
e

NM), (ITP
c,e

NM), (ITP
p

NM), and (ITP
c,p

NM) are equivalent to the problems

(GTPNM), (GTP c
NM), (ITP e

NM), (ITP c,e
NM), (ITP p

NM), and (ITP c,p
NM), respectively,
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in the sense that they are related by a nonsingular linear transformation, and that at

corresponding points the values of their corresponding optimality functions are the

same.

We now state generic algorithm models based on Master Algorithm Model

3.3.12 from Polak (1997) that can be used to solve the problems (GTP ), (GTP c),

(ITP e), (ITP c,e), (ITP p), and (ITP c,p). Our algorithms define the “outer” it-

erations, while the “inner” iterations are defined by user supplied iteration maps

A((P ), η̄), where A denotes one iteration of a nonlinear programming solver applied

to problem (P ) starting from η̄. We begin with the unconstrained problems and state

the following algorithm, which is based on a fixed discretization scheme.

Algorithm V.1. Approximately solves (GTP ).

Data: N0 ∈ N ,M0 ∈ N3 × N3
5, η0 ∈ H0

N0
.

Step 0. Set N = N0, M = M0, and η̄0 = WN(η0).

Step 1. Generate {η̄i}∞i=0 using η̄i+1 ∈ A((GTPNM), η̄i).

Algorithm V.1 also approximately solves (ITP e) and (ITP p), with (GTPNM) re-

placed by (ITP
e

NM) and (ITP
p

NM), respectively. For the constrained problems, we

have the following algorithm.

Algorithm V.2. Approximately solves (GTP c).

Data: N0 ∈ N ,M0 ∈ N3 × N3, η0 ∈ Hc,N0 .

Step 0. Set N = N0, M = M0, and η̄0 = WN(η0).

Step 1. Generate {η̄i}∞i=0 using η̄i+1 ∈ A((GTP
c

NM), η̄i).

Algorithm V.2 also approximately solves (ITP c,e) and (ITP c,p), with (GTP
c

NM) re-

placed by (ITP
c,e

NM) and (ITP
c,p

NM), respectively.

In order to improve the run-time performance of Algorithms V.1 and V.2, we

also develop algorithms based on an adaptive precision-adjustment scheme. Algo-

rithms based on adaptive precision-adjustment keep the discretization parameters,

N and M , small when the algorithm starts and is “far” from the optimal solution.

5Recall that N3 , {m ∈ 2N + 1|m ≥ 3}, as defined in Proposition III.26.
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We use the optimality function to determine how “far” the current iterate is from

the optimal solution. The values of N and M are then increased according to suc-

cessor functions as the algorithm gets closer to the optimal solution. One advantage

these algorithms have over fixed precision algorithms is that the computational work

remains relatively low until the algorithm gets close to the optimal solution. An-

other advantage is that solutions obtained using low levels of discretization are used

to “warm start” the algorithm at higher discretization levels. Algorithms based on

adaptive precision-adjustment fit nicely within the framework of consistent approxi-

mations because we know that as the values of N and M tend to infinity, the solution

of the approximating problem converges to the solution of the original problem. These

algorithms use successor function κ : N → N defined by

κ(N) ∈ {N ′ ∈ N|N ′ > N} . (V.19)

It is clear from (V.19) that κ(N) is an integer larger than N ∈ N . We begin with

the unconstrained problems and state the following algorithm, which is based on an

adaptive precision-adjustment scheme.

Algorithm V.3. Solves (GTP ).

Data: N0 ∈ N ,M(N) : N → N3 × N3, η0 ∈ H0
N0

.

Parameter: β1, β2, β3 > 0.

Step 0. Set i = 0, N = N0, M = M(N0), and η̄i = WN(ηi).

Step 1. Compute an η̄i+1 ∈ A((GTPNM(N)), η̄i).

Step 2. If θ(W−1
N (η̄i+1)) ≥ −(β1/N + β2/(M1(N))4 + β3/(M2(N))4), set η∗N =

W−1
N (η̄i+1), and replace N by κ(N).

Step 3. Replace i by i+ 1, and go to Step 1.

Algorithm V.3 also solves (ITP e) and (ITP p), with (GTPNM(N)) replaced by

(ITP
e

NM(N)) and (ITP
p

NM(N)), and θ(·) replaced by θe(·) and θp(·), respectively. Then

the following theorem is a direct consequence of Theorem III.29.

Theorem V.1. If the sequences {η̄i}∞i=0 and {η∗N} are constructed by Algorithm V.3,
then
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(i) if the sequence {η∗N} is finite, then the sequence {η̄i}∞i=0 has no accumulation
points; and

(ii) if the sequence {η∗N} is infinite, then every accumulation point η∗ ∈ H0 of
{η∗N}

∞
i=0, satisfies θ(η∗) = 0.

When Algorithm V.3 is used to solve (ITP e) and (ITP p), a result similar to Theorem

V.1 with θ(·) replaced by θe(·) and θp(·), respectively, follows as a direct consequence

of Theorem III.52.

For the constrained problems, we have the following algorithm.

Algorithm V.4. Solves (GTP c).

Data: N0 ∈ N ,M(N) : N → N3 × N3, η0 ∈ Hc,N0 .

Parameter: β1, β2, β3 > 0.

Step 0. Set i = 0, N = N0, M = M(N0), and η̄i = WN(ηi).

Step 1. Compute an η̄i+1 ∈ A((GTP
c

NM(N)), η̄i).

Step 2. If θc(W−1
N (η̄i+1)) ≥ −(β1/N + β2/(M1(N))4 + β3/(M2(N))4), set η∗N =

W−1
N (η̄i+1), and replace N by κ(N).

Step 3. Replace i by i+ 1, and go to Step 1.

Algorithm V.4 also solves (ITP c,e) and (ITP c,p), with (GTP
c

NM(N)) replaced by

(ITP
c,e

NM(N)) and (ITP
c,p

NM(N)), and θc(·) replaced by θc,e(·) and θc,p(·), respectively.

Then the following theorem is a direct consequence of Theorem III.30.

Theorem V.2. If the sequences {η̄i}∞i=0 and {η∗N} are constructed by Algorithm V.4,
then

(i) if the sequence {η∗N} is finite, then the sequence {η̄i}∞i=0 has no accumulation
points; and

(ii) if the sequence {η∗N} is infinite, then every accumulation point η∗ ∈ Hc of
{η∗N}

∞
i=0, satisfies θc(η∗) = 0.

When Algorithm V.4 is used to solve (ITP c,e) and (ITP c,p), a result similar to The-

orem V.2 with θc(·) replaced by θc,e(·) and θc,p(·), respectively, follows as a direct

consequence of Theorem III.53.
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Theorems V.1 and V.2 are the end result of the theory we develop in Chapter

III. Theorems V.1 and V.2 establish the fact that the discretization schemes we

develop in Chapter III result in implementable algorithms that are guaranteed to

converge to stationary points of the original problems.

B. NUMERICAL RESULTS
1. Fixed Discretization Schemes

In this section we present numerical results based on the situational description

given in Chapter II. We start by solving three problem instances given in Table 4

using Algorithm V.2, with parameter values given in Table 5. The column headings

K and L in Table 4 denote the number of searchers and targets, respectively. The

column heading η̄0 in Table 5 represents the initial “guess” for the algorithm. The

first three elements of η̄0 are the initial headings of the searchers measured from the

horizontal axis. The initial control portion of η̄0 is ~0, which represents the zero vector

of length N0. We note that we do not include the initial position of the searchers in

η̄0, as they are assumed to be fixed and not part of the decision vector. The initial

positions for the searchers are provided in Table 7. The parameter values given in

the first row of Table 5 are used with Algorithm V.2 for ProbA and ProbC, and the

parameter values given in the second row are used with Algorithm V.2 for ProbB.

Table 4. Fixed discretization problem instances.
Instance Problem Class K L

ProbA (GTP c) 3 10
ProbB (ITP c,e) 3 2
ProbC (ITP c,p) 3 1

Table 5. Algorithm V.2 parameters.
N0 M0 η̄0

200 (25,25) (π/4, π/2, π/2,~0)

320 (25,25) (π/4, π/2, π/2,~0)
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In ProbA, ProbB, and ProbC we consider the case of a HVU operating in a

two-dimensional area of interest (AOI), measuring 70 nautical miles (nm) by 70 nm.

The HVU follows a straight line trajectory, with constant heading x0
3 and constant

speed v0 from its initial position x0(0). The parameter values for the HVU are given

in Table 6. While in transit, the HVU is under threat of attack from L targets. The

target trajectories are conditioned upon the random vector, α, with realization in

A ⊂ R2. For our numerical results, the target trajectories are conditioned upon a

random starting time between zero and one hour, and a random starting location on

either of the vertical sides of the AOI. The numerical solutions we find for ProbA,

ProbB, and ProbC are all based on a receding horizon search, where we are planning

for the next hour.

To generate numerical solutions for ProbA, ProbB, and ProbC, we implement

and run Algorithm V.2 in MATLAB 7.11.0 (version 2010b) (see MathWorks, 2011)

on a 3.46 GHz PC with two quad-core processors, using Windows 7 Pro 64-bit, with

24 GB of RAM. We use the SQP algorithm in TOMLAB SNOPT solver (see Gill

et al., 2007), with the default major and minor optimality tolerance as the stopping

criteria.

In ProbA, the HVU is under threat of attack from L = 10 targets. We assume

that the distributions for the targets’ starting time and starting location are uni-

form and independent. The range of the uniform distribution for starting location is

[0, 140], as we combine both sides of the AOI into a single segment. The range of the

uniform distribution for the starting time is [0, 1]. The targets follow deterministic

trajectories,
{
yl(t;α) : 0 ≤ t ≤ 1

}
, given α, where yl(t;α) = (yl1(t;α), yl2(t;α))T ∈ R2

is the position of the lth target at time t.

The target trajectories are generated by solving the optimal control problem

described in Section II.C with an additional constraint for each target. The additional

constraint requires the targets to hit the HVU at a 90 degree angle of incidence at the

final time, tf . The parameter values used to formulate this optimal control problem
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are given in Table 6. The starting position for the lth target, yl0(α), is on one of the

vertical sides of the AOI, and is determined based on the level of spatial discretization.

We assume that the separation in starting position between members of the swarm is

1.5 nm. The target trajectories are truncated because they are generated by solving

Table 6. Target and HVU parameter values. The target parameter values are the
same for all targets l = 1, 2, ..., L.

vl0 vlf vlmin vlmax ūl,tar x0(0) x0
3 v0

15 kts 19 kts 1 kt 35 kts 250 rad
hour

(35,0) (nm,nm) π/2 25 kts

a time-optimal control problem, and our search problem uses a receding horizon

approach based on the planning horizon [0, 1]. An example of this truncation is

illustrated in Figure 3, where the trajectory of the HVU is indicated in blue, the first

component of the vector M gives the number of starting locations for the swarm,

and the second component of the vector M gives the number of starting times for

the swarm. The graph on the top left of Figure 3 shows the trajectories for a single

swarm consisting of L = 10 targets. The middle graph in the top row of Figure 3

indicates the different trajectories that the swarm would follow if it started from five

specific locations. The trajectories for the different starting locations are shown in

alternating colors, red and then cyan. The graph on the top right of Figure 3 shows

the different trajectories that the swarm would follow if it started from five specific

locations and two specific starting times. The trajectories for the different starting

locations are shown in alternating colors, red and then cyan, for the first starting time.

The trajectories for the different starting locations are shown in alternating colors,

green and then purple, for the second starting time. The graphs on the bottom row of

Figure 3 are the same as their counterparts in the top row, except they are truncated

to show how far the targets (and HVU) can progress on their desired trajectories

during the 1 hour planning horizon.

In an effort to detect the targets, the HVU has an escort consisting of K = 3

searchers. The goal of the searchers is to minimize the probability of failing to detect
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Figure 3. Full and truncated target trajectories for L = 10. Top Row Left: M = (1, 1)
Full, Top Row Middle: M = (5, 1) Full, Top Row Right: M = (5, 2) Full. Bottom
Row Left: M = (1, 1) Truncated, Bottom Row Middle: M = (5, 1) Truncated,
Bottom Row Right: M = (5, 2) Truncated.

any of the targets within the planning horizon [0, 1]. For any t ∈ [0, 1], let xk(t) =

(xk1(t), xk2(t), xk3(t))T ∈ R3 be the physical state of the kth searcher at time t, where

xk1(t) ∈ R and xk2(t) ∈ R are the horizontal and vertical components of the location

of the kth searcher, respectively, and xk3(t) ∈ R is the heading of the kth searcher

measured from the horizontal axis. We assume that the searchers are Dubins vehicles

traveling at a constant velocity vk > 0. The control input for the kth searcher, uk ∈ R,

is the rate of change of the heading (also known as the yaw rate) of the kth searcher.
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Then, the searcher dynamics described in general terms by (II.22) are given by

hk(xk(t), uk(t)) ,


vk cosxk3(t)

vk sinxk3(t)

uk(t)

 , k = 1, 2, 3. (V.20)

We consider two different search platforms for our numerical results. One is modeled

after an SH-60 helicopter, and the other is modeled after a guided missile destroyer

(DDG). The searcher parameters are given in Table 7, where k = 1 is the helicopter

and k = 2, 3 are the destroyers. The initial heading of the kth searcher is given by ξk,

and the initial position of the kth searcher is given by xk(0). The yaw rate limit for

the DDG is based on discussions with CDR David Schiffman, USN, a surface warfare

officer in the Operations Research Department at NPS (personal communication,

November 2010), and the yaw rate limit for the helicopter searcher is based on the

limit for the SH-60 helicopter found in A1-H60BB-NFM-000 (SH-60 NATOPS Flight

Manual, 1996).

Table 7. Searcher parameter values.
k = 1 k = 2 k = 3

ξk π/4 π/2 π/2
vk 120 kts 25 kts 25 kts

xk(0) (35,0) (nm,nm) (25,0) (nm,nm) (45,0) (nm,nm)

Yaw Rate Limit 1885 rad
hour

250 rad
hour

250 rad
hour

We let rk,l(xk(t), yl(t;α)) ≥ 0 denote the detection rate at time t for the kth

searcher at (xk1(t), xk2(t))T when the lth target is located at yl(t;α). For our numerical

results, we adopt the Poisson Scan Model (see, e.g., p. 3-1 in Washburn, 2002) and

set

rk,l((xk1(t), xk2(t))T , yl(t;α)) = λkΦ[(F k − ρ((xk1(t), xk2(t))T , yl(t;α)))/σk], (V.21)

where Φ(·) is the standard normal cumulative distribution function, λk is the scan

opportunity rate, F k is a sensor parameter, σk reflects the variability in the received
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signal strength, and ρk((xk1(t), xk2(t))T , yl(t;α)) is used to model the signal loss, which

depends on the distance between the target and the searcher; see for example Figure

4.5 on page 93 in Wagner et al. (1999). The detection rate functions for the helicopter

searcher, shown in Figure 4, and the DDG searchers, shown in Figure 5, are based

on ρk((xk1(t), xk2(t))T , yl(t;α)) = ak‖(xk1(t), xk2(t))T − yl(t;α)‖2 + bk, with parameter

values given in Table 8. The parameter values are chosen to reflect reasonable sensor

performance based on discussions with other naval officers in the Operations Research

Department at NPS who have served on these platforms (CDR David Schiffman, USN,

and CDR Douglas Burton, USN, personal communication, November 2010).

Table 8. Detection rate parameter values.
k = 1 k = 2 k = 3

λk 1.1 1 1
F k 90 90 90
ak 0.3 0.3 0.3
bk 20 60 60
σk 100 15 15

The dimension of the decision vector, η̄(·), in ProbA isKN0+K = 603, because

we determine a control input for each of the searchers at every time step as well as the

optimized initial heading for each searcher. Before we give our numerical results, we

first show baseline results based on the current concept of operations (CONOPS) in

use by the U.S. Navy. This CONOPS has the helicopter escort orbiting the HVU at a

distance of 2.5 nm and the DDG escorts keeping station on parallel courses to the HVU

at a distance of 10 nm. The CONOPS is based on discussions with helicopter pilots

and surface warfare officers in the Operations Research Department at NPS (LCDR

Harrison Schramm, USN, LCDR Ron Cappellini, USN, and CDR David Schiffman,

USN, personal communication, February 2011). The resulting trajectories are shown

in Figure 6. In Figure 6, the target trajectories are plotted in alternating colors of

red and cyan to separate the specific starting positions of the swarm. It should be

noted that only the set of target trajectories based on a starting time of t = 0 and all
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Figure 4. Detection Rate Function for Helo Searcher.

starting locations is plotted in Figure 6. The additional target trajectories based on

other starting times between [0, 1] are not shown in the interest of keeping the plot

legible. The trajectory for the HVU is shown in blue, the DDG escort trajectories are

shown in black, and the helicopter escort trajectory is shown in green. The objective

value, which represents the probability that all of the searchers fail to detect any of

the targets in [0, 1], for this set of trajectories is 0.9589. It should be noted that as the

targets get closer to the HVU the probability that all of the searchers fail to detect

any of the targets will be lower, but this improvement might come too late for the

HVU to effectively defend itself.

The resulting trajectories from Algorithm V.2 are shown in Figure 7. The

colors for the trajectories are the same as those described above for Figure 6. The

helicopter trajectory is particularly good at illustrating how the algorithm gets the

searchers to areas where they can accumulate as much probability “mass” as possible,
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Figure 5. Detection Rate Function for DDG Searcher.

and keeps them there to the extent allowed by the constant speed and turn rate

constraints. The objective value is now 0.3954, which is significantly better than the

baseline. This indicates there is a benefit to leaving the vicinity of the HVU and

seeking out the potential attackers. The time required to solve ProbA was 26.82

hours, including 1.54 hours to generate the target trajectories.

In ProbB the HVU is under threat of attack from L = 2 targets. The target

l = 1 is assumed to leave from the right-hand side of the area of interest and target

l = 2 is assumed to leave from the left-hand side of the area of interest. The target

trajectories are again conditioned upon a random starting time between zero and

one hour, and a random starting location along the appropriate vertical side of the

AOI. We assume that the target’s starting time and location are independent random

variables. We assume that the distribution for starting position for both targets is

uniform with range [0, 70]. We assume that the distribution for starting time for
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Figure 6. Trajectories based on current CONOPS. HVU trajectory is blue. Helicopter
trajectory is green. DDG trajectories are black. Target trajectories alternate red and
cyan.

target l = 1 is triangular, with the target being twice as likely to leave at t = 0 as

it is to leave at t = 1. We assume that the distribution for starting time for target

l = 2 is uniform with range [0, 1].

The target trajectories are generated in the same manner as they were for

ProbA with the parameter values given in Table 9.

Table 9. Target and HVU parameter values. The target parameter values are the
same for targets l = 1, 2.

vl0 vlf vlmin vlmax ūl,tar x0(0) x0
3 v0

10 kts 12 kts 1 kt 35 kts 250 rad
hour

(35,0) (nm,nm) π/2 25 kts

The HVU again has an escort consisting of K = 3 searchers. The goal of the
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Figure 7. Trajectories based on Algorithm V.2 on ProbA. HVU trajectory is blue. He-
licopter trajectory is green. DDG trajectories are black. Target trajectories alternate
red and cyan.

searchers is to maximize the expected number of targets detected within the planning

horizon [0, 1]. The searcher and detection rate parameters are the same as those given

in Tables 7 and 8, respectively.

The dimension of the decision vector, η̄(·), in ProbB is again given by KN0 +

K = 963, which is different value than it was for ProbA due to the different parameter

values used in Algorithm V.2. The resulting trajectories from Algorithm V.2 are

shown in Figure 8. The color codes for the trajectories are the same as described

above for Figure 6, except that target l = 1 trajectories are shown in red and target

l = 2 trajectories are shown in magenta. Again, we note that only the set of target

trajectories based on a starting time of t = 0 and all starting locations is plotted

in Figure 8. The objective value, which represents the expected number of targets
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detected in [0, 1], for this set of trajectories is 0.4542. The time required to solve

ProbB was 28.71 hours, including 0.33 hours to generate the target trajectories.

Figure 8. Trajectories based on Algorithm V.2 on ProbB. HVU trajectory is blue.
Helicopter trajectory is green. DDG trajectories are black. Target trajectories are
magenta and red.

In ProbC the HVU is under threat of attack from L = 1 target. The target is

assumed to leave from one of the two vertical sides of the area of interest. The target

trajectories are conditioned in the same way as they were for ProbA and ProbB. We

assume that the distributions for starting time and starting location are independent

and uniform. The range of the uniform distribution for starting location is [0, 140],

as we again combine both sides of the AOI into a single segment. The range of the

uniform distribution for starting time is [0, 1].

The target trajectories are generated in the same manner as they were for
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ProbA with the parameter values given in Table 10. We note that we now consider a

high-speed target, with a maximum speed of 60 kts.

Table 10. Target and HVU parameter values.

v1
0 v1

f v1
min v1

max ū1,tar x0(0) x0
3 v0

10 kts 12 kts 1 kt 60 kts 250 rad
hour

(35,0) (nm,nm) π/2 25 kts

The HVU again has an escort consisting of K = 3 searchers. The goal of the

searcher is to minimize the probability of failing to detect any of the targets during

the planning horizon [0, 1]. The searcher and detection rate parameters are the same

as those given in Tables 7 and 8, respectively.

The dimension of the decision vector, η̄(·), in ProbC is KN0 +K = 603. The

resulting trajectories from Algorithm V.2 are shown in Figure 9. The color codes for

the trajectories are the same as described above for Figure 6, except that the target

trajectories are shown in red. Again, we note that only the set of target trajectories

based on a starting time of t = 0 and all starting locations is plotted in Figure 9.

The objective value, which represents the probability that all of the searchers fail to

detect any of the targets during [0, 1], for this set of trajectories is 0.7979. The time

required to solve ProbC was 2.59 hours, including 0.15 hours to generate the target

trajectories.

The results in this section show that Algorithm V.2 is tractable for as many

as three searchers and ten targets. The results also indicate that it is beneficial

for the searchers to leave the vicinity of the HVU and seek out potential threats in

order to improve the overall probability of detection or expected number of targets

detected. The results of ProbC illustrate the effect of a high-speed target. The

helicopter searcher does not spend too much time on one side of the AOI, but rather

attempts to cover what it can on one side and then flies over to the other side of

the AOI. Finally, we see that obtaining numerical solutions for ProbA, ProbB, and

ProbC using a fixed discretization scheme requires a significant amount of computing
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Figure 9. Trajectories based on Algorithm V.2 on ProbC. HVU trajectory is blue.
Helicopter trajectory is green. DDG trajectories are black. Target trajectories are
red.

time. There is evidence that using an adaptive discretization scheme can produce

solutions that are equivalent to those obtained using fixed discretization schemes,

but at a lower computational cost; see, for example, He & Polak (1990) and Section

3.3.3 in Polak (1997). We consider an algorithm based on an adaptive discretization

scheme in the next section.

2. Adaptive Discretization Schemes

In this section we obtain numerical solutions for ProbA using an adaptive

discretization scheme based on Algorithm V.4 and compare them to results obtained

for ProbA using the fixed discretization scheme of Algorithm V.2. The parameters

β1, β2, and β3 used to define what it means for the optimality function to be “close

enough” to zero, the successor function, and the function M(N) used to specify
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the level of spatial discretization as a function of the time discretization parameter

considered in this section are summarized in Table 11. The column heading Set in

Table 11 refers to the set of algorithm parameters used to obtain the solution for

ProbA using either Algorithm V.2 or V.4, as indicated in the table. We note that

the expressions for Mi(N) given for Algorithm V.4 indicate that the initial spatial

discretization parameters are (5, 5) and that they are each increased by adding 2 (for

Sets 4 and 6) or 4 (for Sets 5 and 7) to the previous value every time the value of the

time discretization parameter is doubled according to κ(N).

Table 11. Algorithm parameters used to obtain solutions for ProbA, where K = 3,
L = 10, and i = 1, 2. For all Sets, η̄0 = (π/4, π/2, π/2,~0).

Set Algo. N0 M0 β1 β2 β3 κ(N) Mi(N)

1 V.2 80 (13, 13) N/A N/A N/A N/A N/A
2 V.2 120 (17, 17) N/A N/A N/A N/A N/A
3 V.2 320 (25, 25) N/A N/A N/A N/A N/A
4 V.4 10 N/A 10−9 5× 10−10 5× 10−10 N ′ = 2N 5 + 2 log2(N

10
)

5 V.4 10 N/A 10−9 5× 10−10 5× 10−10 N ′ = 2N 5 + 4 log2(N
10

)
6 V.4 10 N/A 10−8 5× 10−9 5× 10−9 N ′ = 2N 5 + 2 log2(N

10
)

7 V.4 10 N/A 10−8 5× 10−9 5× 10−9 N ′ = 2N 5 + 4 log2(N
10

)

The solutions we obtain are based on the same scenario described in Section

V.B.1 for ProbA. The target trajectories are conditioned and generated as described

above for ProbA using parameter values given in Table 6. The goal of the K = 3

searchers is to minimize the probability that they all fail to detect any of the targets

during [0, 1]. The searcher and detection rate parameters are the same as those given

in Tables 7 and 8, respectively.

The data collected by using Algorithms V.2 and V.4 is shown in Figure 10.

The objective function values for all seven algorithm parameter sets were evaluated

using a “high precision” discretization level of N = 2560 and M = (91, 91) to ensure

they were all compared against a common standard. It should be noted that when

using the adaptive discretization scheme it is possible for the objective function value
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to go up when the algorithm increases the values of the discretization parameters. An

example of this behavior is seen for Set 6 after approximately 10000 seconds, where the

algorithm increases N from 40 to 80 and M from (9, 9) to (11, 11). Based on Figure

10, it is clear that all of the adaptive precision schemes eventually achieve a solution

quality within 1.42% of the best solution obtained using one of the fixed discretization

schemes. While the fixed discretization scheme for Set 2 does better than the adaptive

discretization schemes after approximately 4000 seconds, it is important to note that

all of the adaptive discretization schemes reach an objective value between 0.385 and

0.39 more than a thousand seconds before the fixed discretization scheme for Set 2

does. It is also important to note that all of the adaptive schemes perform better than

the fixed schemes based on Sets 1 and 3. This implies that it is possible to do better

for a specific problem if you happen to select a “good” fixed discretization scheme at

the outset, but doing so without any prior knowledge about the problem is difficult.

The adaptive schemes are fairly robust in the sense that they do well regardless of the

initial choice of parameter values. The results in Figure 10 indicate that the adaptive

precision schemes for Sets 5 and 7 offered the best overall performance compared to

the other adaptive discretization schemes.

Figure 11 shows the resulting trajectories from Algorithms V.2 and V.4. The

color codes for the trajectories are the same as described above for Figure 6. Again,

we note that only the set of target trajectories based on a starting time of t = 0

and all starting locations is plotted in Figure 11. It is clear from the plots in Figure

11 that the overall “shape” of the final searcher trajectories is the same regardless

of the algorithm and parameters used to obtain the solution, with the caveat that

the helicopter searcher trajectory is the mirror image when it goes to the opposite

side of the AOI. The times used to plot the trajectories in Figure 11 for the fixed

discretization schemes (Sets 1-3) were selected so that enough computational time

had elapsed to allow the solution to stabilize. For the adaptive discretization schemes

(Sets 4-7), the trajectories were only captured when the algorithm increased the
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Figure 10. Comparison of fixed and adaptive precision schemes using Algorithms V.2
and V.4, respectively. For Sets 1 and 2 computation was terminated between 10000
and 15000 seconds because the solution had stabilized. Because Set 3 did not begin
to stabilize until after 20000 seconds, the horizontal axis was extended.

discretization level. Because of this limitation, the times used to plot the trajectories

in Figure 11 for the adaptive discretization schemes were selected based on the largest

computational time data that was available.
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Figure 11. Trajectories for ProbA based on Algorithms V.2 and V.4. Top Row Left:
Set 1 after 10339 seconds, N = 80, M = (13, 13). Top Row Right: Set 2 after
12201 seconds, N = 120, M = (17, 17). Second Row Left: Set 3 after 25147 seconds,
N = 320, M = (25, 25). Second Row Right: Set 4 after 29852 seconds, N = 80,
M = (11, 11). Third Row Left: Set 5 after 23152 seconds, N = 40, M = (13, 13).
Third Row Right: Set 6 after 22167 seconds, N = 80, M = (11, 11). Bottom Row
Middle: Set 7 after 39998 seconds, N = 80, M = (17, 17).
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3. Real-Time Methods

Although the adaptive discretization schemes discussed in Section V.B.2 offer

improved run-time performance over fixed discretization schemes, they are still not

fast enough to be implemented as real-time solution methods for use onboard a UAS

or USV. In this section we consider three heuristic approaches that have the potential

to be used as real-time solution methods onboard unmanned vehicles. This section

begins with a discussion of how we implement the three heuristic methods. We then

give a description of how the problem instances to be solved by these three methods

were generated. Next we provide numerical results for the three methods. Finally, we

state our conclusions based on the numerical results achieved by the three methods.

a. Heuristic Methods

We consider three different heuristic methods in this section that can

be used to solve generalized optimal control problems. For simplicity we assume that

we have only a single searcher, and we therefore omit the superscript notation for

the searcher number. It should be noted that the development that follows could be

trivially extended to include multiple searchers. The first method we consider uses

Algorithm V.2. The second and third methods are based on fitting polynomials to

determine optimal searcher trajectories. The first polynomial-based method attempts

to optimize directly over the coefficients of the polynomials, while the second poly-

nomial based method uses an indirect method similar to that found in Yakimenko

(2000) and Ghabcheloo et al. (2009). The first polynomial-based method solves the

following modified version of (GTP c).

(GTP c,dir) :

min
a

{
M1∑
i=1

M2∑
j=1

Wi,j exp

(
− 1

N

N−1∑
γ=0

L∑
l=1

rl
(
x
( γ
N

)
, yl
( γ
N

;αi,j

)))
φ(αi,j)

}
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s.t. xj

( γ
N

)
=

d∑
i=0

aij

( γ
N

)i
, γ = 0, ..., N − 1, j = 1, 2 (V.22)

ẋj

( γ
N

)
=

d∑
i=1

iaij

( γ
N

)i−1

, γ = 0, ..., N − 1, j = 1, 2 (V.23)

v − 0.05v ≤
∥∥∥(ẋ1

( γ
N

)
, ẋ2

( γ
N

))∥∥∥ ≤ v + 0.05v, γ = 0, ..., N − 1 (V.24)

a =
[
a1

1, a
2
1, ..., a

d
1; a1

2, a
2
2, ..., a

d
2

]
(V.25)

a0
1 = x1(0) (V.26)

a0
2 = x2(0), (V.27)

where Wi,j are the weights for Simpson’s rule, x
(
γ
N

)
=
(
x1

(
γ
N

)
, x2

(
γ
N

))T
, αi,j are

the discretization points at which the integrand is evaluated, d is the order of the

polynomials, v is the searcher’s speed, and x1(0) and x2(0) are the initial position of

the searcher. We note that (V.24) constrains the searcher’s speed to be within 5% of

v.

We then use the following algorithm to solve (GTP c,dir).

Algorithm V.5. Approximately solves (GTP c,dir).

Data: N0 ∈ N ,M0 ∈ N3 × N3, a0 ∈ R2 × R2 × ...× R2.

Parameter: d ∈ N, d ≥ 1.

Step 0. Set N = N0, M = M0, and a = a0.

Step 1. Generate {ai}∞i=0 using ai+1 ∈ A((GTP c,dir), ai).

The second polynomial based method uses an indirect method to deter-

mine the coefficients of the polynomials. We use the term indirect because instead of

directly optimizing over the polynomial coefficients, we instead optimize over termi-

nal conditions which can be used to obtain the polynomial coefficients. The method

used is similar to that described in Yakimenko (2000) and Ghabcheloo et al. (2009),

except that we omit deconfliction of trajectories. In our problem we also assume the

searcher travels at constant velocity, so the searcher’s acceleration is zero over the

entire planning horizon. The description of the method that follows is similar to that

found in Yakimenko (2000) and Ghabcheloo et al. (2009), but is included here for
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the sake of completeness. We denote by x (τ) = (x1 (τ) , x2 (τ))T the desired path

followed by the searcher, parameterized by the virtual arc τ ∈ [0, τf ], where τf is the

total virtual arc length between the initial and final positions of the searcher. We

represent the state as a function of time using the same notation as the state as a

function of the virtual arc length. The meaning should be clear from the context. We

represent the coordinates x1 and x2 by algebraic polynomials of degree d given by

xj(τ) =
d∑
i=0

aijτ
i, j = 1, 2, (V.28)

where τ i indicates that τ is raised to the ith power. The degree d of the polynomials

xj(τ), j = 1, 2 is related to the number of boundary conditions that must be satisfied.

In the formulation that follows, we use the prime sign ′ to indicate ∂/∂τ , ′′ to indicate

the second derivative operator, and ′′′ to indicate the third derivative operator. As

before, we use dot symbols above variables to indicate derivatives with respect to

time, t. Given τf and terminal constraints xj(0), x′j(0), x′′j (0), x′′′j (0), xj(τf ), x
′
j(τf ),

x′′j (τf ), and x′′′j (τf ), for j = 1, 2, the coefficients of the seventh-order polynomial can

be computed from

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 6 0 0 0 0

1 τf τ 2
f τ 3

f τ 4
f τ 5

f τ 6
f τ 7

f

0 1 2τf 3τ 2
f 4τ 3

f 5τ 4
f 6τ 5

f 7τ 6
f

0 0 2 6τf 12τ 2
f 20τ 3

f 30τ 4
f 42τ 5

f

0 0 0 6 24τf 60τ 2
f 120τ 3

f 210τ 4
f





a0
j

a1
j

a2
j

a3
j

a4
j

a5
j

a6
j

a7
j



=



xj(0)

x′j(0)

x′′j (0)

x′′′j (0)

xj(τf )

x′j(τf )

x′′j (τf )

x′′′j (τf )



, j = 1, 2

(V.29)

In order to express the relationship between τ and t, we define λ(τ) = dτ
dt

. Then the

temporal and spatial derivatives of x satisfy

ẋ = λx′. (V.30)
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As in Yakimenko (2000) and Ghabcheloo et al. (2009) we choose λ to be an affine

function of τ , that is, λ(τ) = λ0 +
λf−λ0

τf
τ , with λ0 = ‖ẋ(0)‖, and λf = ‖ẋ(1)‖.

By integrating τ̇ = λ(τ), the virtual arc τ and time t are related by the following

equations

τf =

 λ0, if λf = λ0

λf−λ0

log(λf/λ0)
, if λf 6= λ0

(V.31)

τ

τf
=


t, if λf = λ0

λ0

λf−λ0

((
λf
λ0

)t
− 1

)
, if λf 6= λ0

(V.32)

The second polynomial based method solves the following modified version of (GTP c),

where Table 12 gives a summary of the relationship between the boundary conditions

needed to solve (V.29) and the decision vector b.

Table 12. Relationship between decision vector and boundary conditions for indirect
polynomial method.

b1 b2 b3 b4 b5 b6 b7 b8

x1(τf ) x2(τf ) x′1(τf ) x′2(τf ) x′′′1 (0) x′′′2 (0) x′′′1 (τf ) x′′′2 (τf )

(GTP c,indir) :

min
b

{
M1∑
i=1

M2∑
j=1

Wi,j exp

(
− 1

N

N−1∑
γ=0

L∑
l=1

rl
(
x
( γ
N

)
, yl
( γ
N

;αi,j

)))
φ(αi,j)

}

s.t. xj(τ) =
d∑
i=0

aijτ
i, j = 1, 2,∀τ ∈ [0, τf ]

v − 0.05v ≤ λ(τ) ‖x′(τ)‖ ≤ v + 0.05v,∀τ ∈ [0, τf ]

In problem (GTP c,indir), Wi,j are the weights for Simpson’s rule, αi,j are the discretiza-

tion points at which the integrand is evaluated, d is the order of the polynomials, and

v is the searcher’s speed. The total arc length τf is computed using (V.31) and the

spatial paths x(τ) and speed profiles ẋ are given by (V.29) and (V.30), respectively.
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In order to discretize τ , we set t = γ
N

, γ = 0, 1, ..., N − 1 in (V.32). We note that

for j = 1, 2, xj(0) are the starting coordinates for the searcher, x′′j (0) = x′′j (τf ) = 0,

and x′j(0) are determined by solving the initialization problem described in Algorithm

V.6.

We then use the following algorithm to solve (GTP c,indir).

Algorithm V.6. Approximately solves (GTP c,indir).

Data: N0 ∈ N ,M0 ∈ N3 × N3, η0 ∈ Hc,N0 .

Parameter: d ∈ N, d ≥ 1.

Step 0. Set N = N0, M = M0, and η̄0 = WN(η0).

Step 1. Generate {η̄i}ni=0 using η̄i+1 ∈ A((GTP
c

NM), η̄i), where n is the first iterate

satisfying a given optimality tolerance.

Step 2. Compute x1 from η̄n.

Step 3. Set bj = xj(1), j = 1, 2, b3 = cos(x3(1)), b4 = sin(x3(1)), and bj = 0,

j = 5, 6, 7, 8.

Step 4. Generate {bi}∞i=0 using bi+1 ∈ A((GTP c,indir), bi).

In Step 1 of Algorithm V.6 we are using Algorithm V.2 to solve

(GTP
c

NM), and stopping it after satisfying a given optimality tolerance. In Step

2 of Algorithm V.6 we use the solution, η̄n, from Step 1 to compute the searcher’s

trajectory. In Step 3 of Algorithm V.6 we set bj = xj(1), j = 1, 2, where (x1(1), x2(1))

is the final position of the searcher we calculated in Step 2. We also use η̄n from Step 2

to determine the searcher’s final heading, which we resolve into components to obtain

values for b3 and b4. We initialize the remaining components of b to zero and move

on to Step 4, where we determine an optimized value for b.

b. Problem Instances

All of the problem instances are based on a HVU operating in a 70 nm

by 70 nm area of interest using a receding horizon approach, and a one hour planning

horizon. For these instances, the HVU is under threat of attack from L = 10 targets.

The target trajectories are conditioned and generated as described above for ProbA.
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The parameter values used to generate the target trajectories are given in Table 6.

We again assume that the separation in starting position between members of the

swarm is 1.5 nm. We assume that the HVU has a single helicopter escort, whose

goal is to minimize the probability that it fails to detect any of the targets during

the planning horizon [0, 1]. With the exception of x1(0) and x2(0), which are given

in Table 13, the searcher and detection rate parameters are the same as those given

in Tables 7 and 8, respectively, with K = 1.

We randomly generate the starting position for the searcher, given in

columns two and three of Table 13. The x1(0) value was selected from the range

[20, 50], and the x2(0) value was selected from the range [0, 30]. We let the vertical

starting position for the targets on the side (or sides) of the area of interest be a

continuum between [0, 140] and again randomly select the lower and upper bounds

for the starting position of the targets. The generated values are given in columns

four and five of Table 13.

Table 13. Real-time problem instances. For all instances, problem class is (GTP c),
K = 1, and L = 10.

Instance x1(0) x2(0) Target LB Target UB Side Scenario

ProbD 34.56 24.01 19.86 59.05 LHS
ProbE 47.47 11.77 23.97 91.77 Both
ProbF 23.81 27.4 88.53 134.05 RHS

c. Numerical Results

In this section, we provide numerical results obtained using Algorithms

V.2, V.5, and V.6 to solve the problem instances given in Table 13. We implement and

run all Algorithms in MATLAB 7.11.0 on the same PC described in Section V.B.1,

again using SNOPT with default major and minor optimality tolerance as the stop-

ping criteria except as noted below. We separate the results for each problem instance

into two tables, one based on the fixed discretization method given in Algorithm V.2,

and one based on the polynomial methods given in Algorithms V.5 and V.6. We also

provide a figure for each problem instance that shows the resulting trajectories from
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the three solution methods. The result from Algorithm V.2 in Figures 12, 13, and

14 uses the first set of parameters that achieve an objective function value smaller

than either of the objective function values achieved by Algorithms V.5 and V.6. We

plot all results using a value of N = 320 and M = (25, 25) to ensure a common

standard. This need to “level the playing field” creates two different issues based

on the solution methodologies. The results given in Figures 12, 13, and 14 are from

solutions generated with N values smaller than 320. As a result, the control inputs

for the searcher resulting from Algorithm V.2 are linearly interpolated to N = 320 to

generate the plots. Algorithms V.5 and V.6 generate polynomial coefficients, so there

is no issue with the N = 320 used for plotting being larger than the N value used to

generate the coefficients. There is an issue, however, when it comes to ensuring that

the searcher maintains a constant speed equal to v along its trajectory. We generate

the plots for Algorithms V.5 and V.6 using the path for the searcher defined by the

polynomial coefficients, but we ensure that the distance traveled between each of the

N = 320 searcher waypoints is limited to v
320

, where v is the velocity of the searcher.

Tables 14, 16, and 18 provide results from Algorithm V.2. The initial

control input for the searcher is the zero vector of appropriate length, and the initial

heading for the searcher is chosen based on the side scenario. For the left hand side

and both side scenarios, the initial heading for the searcher is 3π/4. For the right

hand side scenario, the initial heading for the searcher is π/4. Tables 14, 16, and 18

list the values of N and M used to run Algorithm V.2, but all of the objective function

values in row three of these tables are evaluated using a common discretization level of

N = 320 and M = (25, 25). Row four in Tables 14, 16, and 18 gives the time required

for the optimization only, and does not include time to build the target trajectories.

To implement Algorithm V.5, we use d = 7. The initial input for the

polynomial coefficients is chosen based on the side scenario. For the left hand side

scenario, all of the coefficients are zero with the exception of a1
1 which is set to a value

of −x1(0). This results in an initial horizontal line trajectory for the searcher from its
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starting location of (x1(0), x2(0)) and ending at (0, 24.01). For the both side scenario,

we set a1
1 = −88.98, a3

1 = −0.37, a4
1 = 0.03, a1

2 = 45.64, a3
2 = −0.40, a4

2 = 0.04,

and all the other coefficients equal to zero. This results in an initial straight line

trajectory for the searcher with slope -0.507, beginning at (x1(0), x2(0)) and ending

at (−41.85, 57.05). For the right hand side scenario, all of the coefficients are zero

with the exception of a1
1 which is set to a value of 70 − x1(0) = 46.19. This results

in an initial horizontal line trajectory for the searcher from its starting location of

(x1(0), x2(0)) and ending at (70, 27.4). Tables 15, 17, and 19 list the values of N

and M used to run Algorithm V.5, but all of the objective function values in row

four of these tables are evaluated using a common discretization level of N = 320

and M = (25, 25). Row five in Tables 15, 17, and 19 gives the time required for the

optimization only, and does not include time to build the target trajectories. We note

that for ProbD the stopping criteria for Algorithm V.5 is not the default major and

minor optimality criteria for SNOPT. Because we are interested in real-time methods,

we also set a maximum number of major iterations. In the case of ProbD, SNOPT

reaches the 700 major iteration limit prior to satisfying its default optimality criteria.

This is the reason why the searcher trajectory shown in middle plot of Figure 12 goes

so far to the left, beyond the target trajectories. The algorithm was stopped before

it could finish optimizing the trajectory to include as much probability “mass” as

possible, while still satisfying the velocity constraints.

To implement Algorithm V.6, we use d = 7. Because Algorithm V.6 is

effectively initialized by Algorithm V.2, we again use the zero vector of appropriate

length as the initial control input for the searcher. For the left hand side and both

side scenarios, the initial heading for the searcher is 3π/4. For the right hand side

scenario, the initial heading for the searcher is π/4. Tables 15, 17, and 19 list the

values of N and M used to run Algorithm V.6, but all of the objective function

values in row four of these tables are evaluated using a common discretization level of

N = 320 and M = (25, 25). Row five in Tables 15, 17, and 19 gives the time required
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for the initialization and optimization only, and does not include time to build the

target trajectories. We note that the stopping criteria for Algorithm V.6 is not the

default major and minor optimality criteria for SNOPT. Again, based on our desire

to find real-time methods we set the stopping criteria as 15 major iterations. This is

the reason why the searcher trajectories shown in the right plots of Figures 12 and 14

go so far beyond the target trajectories. The algorithm was stopped before it could

finish optimizing the trajectories to include as much probability “mass” as possible,

while still satisfying the velocity constraints. We note that due to the complicated

relationship between the objective function and the decision vector, we use finite

differences in SNOPT to estimate the gradients. Finally, we note that we initialize

ProbE using N = 20 and M = (9, 9) and not N = 10 and M = (5, 5). This is

because this method is highly dependent on a good initial input for the searcher’s

final position, and the lower levels of discretization do not provide a solution where

the searcher goes to both sides of the AOI to look for the targets.

149



Table 14. Algorithm V.2 results for ProbD.
N 10 15 20 25 30 35 40 320
M (5,5) (7,7) (9,9) (11,11) (13,13) (15,15) (15,15) (25,25)

Obj. 0.0476 0.0294 0.0324 0.0206 0.0097 0.0118 0.0092 0.0088
Time
(sec.) 10.67 48.76 141.77 203.48 361.53 612.03 884.68 16223.48

Table 15. Algorithm V.5 and V.6 results for ProbD.
Direct Indirect

N 10 10
M (5,5) (5,5)

Obj. 0.0246 0.0927
Time (sec.) 317.40 176.50

Figure 12. Trajectories for ProbD based on Algorithms V.2, V.5, and V.6. Left:
After 203 seconds, Algorithm V.2, N = 25, M = (11, 11) for solution, N = 320, M =
(25, 25) for plot. Middle: After 317 seconds, Algorithm V.5, N = 320, M = (25, 25).
Right: After 176 seconds, Algorithm V.6, N = 320, M = (25, 25).
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Table 16. Algorithm V.2 results for ProbE.
N 10 15 20 25 30 35 40 320
M (5,5) (7,7) (9,9) (11,11) (13,13) (15,15) (15,15) (25,25)

Obj. 0.5161 0.5022 0.2767 0.2715 0.2715 0.2622 0.2593 0.2555
Time
(sec.) 8.29 32.60 52.51 93.55 175.11 284.54 431.95 43000.29

Table 17. Algorithm V.5 and V.6 results for ProbE.
Direct Indirect

N 10 20
M (5,5) (9,9)

Obj. 0.3526 0.2918
Time (sec.) 66.05 750.00

Figure 13. Trajectories for ProbE based on Algorithms V.2, V.5, and V.6. Left: After
53 seconds, Algorithm V.2, N = 20, M = (9, 9) for solution, N = 320, M = (25, 25)
for plot. Middle: After 66 seconds, Algorithm V.5, N = 320, M = (25, 25). Right:
After 750 seconds, Algorithm V.6, N = 320, M = (25, 25).
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Table 18. Algorithm V.2 results for ProbF.
N 10 15 20 25 30 35 40 320
M (5,5) (7,7) (9,9) (11,11) (13,13) (15,15) (15,15) (25,25)

Obj. 0.0553 0.0330 0.0246 0.0265 0.0249 0.0237 0.0234 0.0216
Time
(sec.) 9.29 39.40 74.77 225.61 464.91 818.13 1008.03 35608.20

Table 19. Algorithm V.5 and V.6 results for ProbF.
Direct Indirect

N 10 10
M (5,5) (5,5)

Obj. 0.0734 0.0421
Time (sec.) 67.85 185.19

Figure 14. Trajectories for ProbF based on Algorithms V.2, V.5, and V.6. Left: After
39 seconds, Algorithm V.2, N = 15, M = (7, 7) for solution, N = 320, M = (25, 25)
for plot. Middle: After 68 seconds, Algorithm V.5, N = 320, M = (25, 25). Right:
After 185 seconds, Algorithm V.6, N = 320, M = (25, 25).
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d. Conclusions

Based on the results presented in this section, it appears that the

method which is best suited to provide real-time solutions is Algorithm V.2. The

fixed-precision method implemented in Algorithm V.2 consistently provides solutions

with the best objective values and the lowest computational times. Table 20 summa-

rizes the comparison between the different methods. To compute the values in Table

20, we assume that the objective value obtained from Algorithm V.2 with N = 320

and M = (25, 25) is the “correct” value. For ProbD, we use the objective values

from Algorithm V.2 for N = 25 and M = (11, 11) and N = 20 and M = (9, 9) to

compare with Algorithms V.5 and V.6, respectively. For ProbE, we use the objective

value from Algorithm V.2 for N = 20 and M = (9, 9) to compare with Algorithms

V.5 and V.6. For ProbF, we use the objective value from Algorithm V.2 for N = 15

and M = (7, 7) to compare with Algorithms V.5 and V.6. The ∆t columns in Table

20 give the additional time in seconds necessary for the Algorithms V.5 and V.6 to

compute their respective solutions. In fairness, it should again be stressed that the

implementation of Algorithm V.6 utilized finite differences to estimate the required

gradients. This puts Algorithm V.6 at a disadvantage over the others, although we

attempt to mitigate this effect by stopping the algorithm after only 15 major itera-

tions. Future studies should be done with the gradients computed explicitly to ensure

a more balanced comparison.

Table 20. Comparison of real-time methods.
ProbD ProbE ProbF

Algo. % Error ∆t % Error ∆t % Error ∆t
V.2 134.8%/269.3% N/A 8.29% N/A 53.10% N/A
V.5 180.90% 113.92 37.98% 13.55 239.99% 28.46
V.6 957.20% 34.73 14.19% 697.49 94.92% 145.8
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VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

Continuous time-and-space search problems arise in numerous applications

such as anti-submarine warfare, search and rescue operations, and protection of

HVU’s from small boat attack. We consider the problem of detecting targets that

seek to harm a HVU, and formulate it as a generalized optimal control problem.

While the theory that we develop allows for more general cases, we assume that

the targets follow deterministic trajectories, given realizations of random variables

that provide information about their initial conditions. We consider two classes of

problems, (GTP ) and (ITP ), based on whether the targets act in a coordinated or

independent manner, respectively. For both classes, we consider objective functions

that minimize the probability that all of the searchers fail to detect any of the targets

during the planning horizon and maximize the expected number of targets detected

during the planning horizon.

We develop discretization schemes to solve (GTP ) and (ITP ) problems, and

show that the finite dimensional problems are consistent approximations to their in-

finite dimensional counterparts. We then use these discretization schemes to develop

implementable algorithms that can be used to solve the problems (GTP ), (GTP c),

(GTP e), (GTP c,e), (ITP p), (ITP c,p), (ITP e), and (ITP c,e). We provide numerical

examples to show that our algorithms are tractable for as many as three searchers

and ten targets. For (GTP c) we compare an algorithm based on fixed discretization

schemes to an algorithm based on adaptive discretization schemes. Our results indi-

cate that both methods produce equivalent solutions, but the adaptive discretization

schemes require less computational time to acheive them.

We compare three heuristic approaches that have the potential to be used

as real-time solution methods onboard unmanned vehicles. We use two different

polynomial based approaches, and one fixed-precision method to solve three randomly
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generated problem instances. For these problem instances, the fixed-precision method

offers the best overall performance. It consistently provides solutions with the best

objective values and the lowest computational times.

We also develop rate of convergence results for approximations to infinite di-

mensional problems that involve a single discretization parameter for the space of

decision variables and two discretization parameters for the objective function as a

computational budget b tends to infinity. We note that the generalized optimal control

problems we define in Chapter III are examples of these infinite dimensional problems.

We show that superlinear and linear algorithms can achieve the same theoretical rate

of convergence as that achieved by the “ideal” case of a finitely convergent algorithm.

We also identify specific optimal discretization policies for both the superlinear and

linear cases that achieve this best possible rate. Our analysis indicates that if a linear

or superlinear optimization algorithm is used to solve the finite dimensional optimal

control problem, with Euler’s method used to numerically solve the differential equa-

tions and Simpson’s rule used to numerically approximate the spatial integration,

then the best possible rate of convergence is b−2/3. If a second-order Runge-Kutta

method is used instead of Euler’s method to numerically solve the differential equa-

tions, then the best possible rate of convergence is b−1. If a fourth-order Runge-Kutta

method is used instead of Euler’s method to numerically solve the differential equa-

tions, then the best possible rate of convergence is b−4/3. Finally, if an ideal method

is used instead of Euler’s method to numerically solve the differential equations, then

the best possible rate of convergence is b−2. If “ideal” methods are used to solve the

differential equations as well as evaluate the spatial integration, there is no benefit

associated with increasing the discretization parameters N or M , so b = n, where n

is the number of iterations of the optimization algorithm. The resulting asymptotic

rates for a superlinear optimization algorithm with order γ ∈ (1,∞) and c ∈ (0, 1),

and a linear optimization algorithm with rate constant c̄ ∈ (0, 1) are cγ
b

and c̄b,

respectively. Based on our analysis, it appears that it is possible to improve the run-
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time performance of our algorithms if a higher-order method such as Runge-Kutta or

pseudo-spectral is used in place of Euler’s method to numerically solve the differential

equations.

B. FUTURE WORK

This dissertation suggests a number of possibilities for extension and future

work. The first area we consider for additional work is the development of a real-time

solution method. As discussed in Section V.B.3.d, the implementation of Algorithm

V.6 used finite differences to estimate the required gradients. Future work should

include explicit computation of all required derivatives, so that the implementation

of Algorithm V.6 is on a more equal footing with those of the other two potential

real-time methods. An opportunity for extension would be to use something other

than algebraic polynomials as the basis for the searcher trajectories in Algorithms

V.5 and V.6. One suggestion would be to use Chebyshev polynomials. In Caporale

& Cerrato (2008) Chebyshev polynomials in conjunction with Chebyshev nodes were

shown to provide excellent approximations to the solutions of linear partial differential

equations, indicating that there might be potential for their use in Algorithms V.5 or

V.6. Another suggestion would be to use Bézier curves in Algorithm V.6. Because

Bézier curves are completely contained in the convex hull of their control points, they

would be particularly well suited to an indirect curve fitting method where the control

points could be determined based on the low level initialization as in Algorithm V.6.

As discussed in Section VI.A above, there is potential for run-time improve-

ment if higher order methods are used in place of Euler’s method to numerically solve

the differential equations. The consistent approximation theory and implementable

algorithms developed in Chapters III and V, respectively, could be extended based

on using Runge-Kutta or pseudo-spectral methods instead of Euler’s method to nu-

merically solve the differential equations, however, we foresee numerous technical

challenges.
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In this dissertation, we consider two different types of objective functions. An-

other natural extension would be to consider additional types of objective functions.

In the sections that follow, we present two alternative objective functions that, while

potentially more difficult to solve, may be of operational interest in many situations.

1. Minimize Expected Time Until First Detection

We now consider a new performance metric for our optimization problem that

is based on minimizing the expected time until the first detection of all the targets.

In Chapter II, we derived (II.3), which is an expression for the probability that the

kth searcher does not detect the lth target during [0, t], t ∈ [0, 1] We define the random

variable T as the time of first detection of the lth target, and note that

P ({T > t}) = qk,l(t;α) = exp

(
−
∫ t

0

rk,l
(
xk(s), yl(s;α)

)
ds

)
= 1− F (t), (VI.1)

where F (t) is the cumulative distribution function for the random variable T . Then

for the case of one searcher and one target the conditional expected time of first

detection given a particular target trajectory is given by

E[T |α] =

∫ 1

0

tfT (t)dt, (VI.2)

where fT (t) is the probability density function of the random variable T . We note

that the support of the random variable T is [0, 1], so E[T |α] is finite. We also note

that we can use (VI.1) and integration by parts to show that (VI.2) can be re-written

in terms of qk,l(t;α) as follows

E[T |α] =

∫ 1

0

qk,l(t;α)dt =

∫ 1

0

exp

(
−
∫ t

0

rk,l
(
xk(s), yl(s;α)

)
ds

)
dt

=

∫ 1

0

P ({T > t}) dt = P ({T > t}) t
∣∣1
0
−
∫ 1

0

t (−fT (t)) dt

=

∫ 1

0

tfT (t)dt. (VI.3)

If we assume that the searchers make independent detection attempts, then for the

158



case of multiple searchers the conditional expected time of first detection given a

particular target trajectory is given by

E[T |α] =

∫ 1

0

K∏
k=1

exp

(
−
∫ t

0

rk,l
(
xk(s), yl(s;α)

)
ds

)
dt (VI.4)

=

∫ 1

0

exp

(
−

K∑
k=1

∫ t

0

rk,l
(
xk(s), yl(s;α)

)
ds

)
dt (VI.5)

=

∫ 1

0

exp

(
−
∫ t

0

K∑
k=1

rk,l
(
xk(s), yl(s;α)

)
ds

)
dt. (VI.6)

If we assume that the random variables that the target motion is conditioned upon

are independent across targets, then the expected time of first detection of the lth

target is given by

E[T ] =

∫
αl∈A

[∫ 1

0

exp

(
−
∫ t

0

K∑
k=1

rk,l
(
xk(s), yl(s;αl)

)
ds

)
dt

]
φl
(
αl
)
dαl. (VI.7)

2. Herding Formulation

Throughout this dissertation, we have focused on detecting the potential threats

to the HVU. Once the potential threats are located, the searchers could become de-

fenders who now select controls such that the potential attackers are herded away

from the HVU. In a herding model, we assume a different target motion model where

the targets’ motion is defined by coupled dynamics, which we describe in detail below.

Then, a natural metric for the degree of success in herding would be to maximize the

minimum distance between the HVU and any attacker at any instance of time in the

planning horizon. This herding success metric is given by

max
xk(·)

{
min
l,t

∫
αl∈A

[(
x0

1(t)− yl1
(
t;αl

))2
+
(
x0

2(t)− yl2
(
t;αl

))2
]
φl
(
αl
)
dαl
}
. (VI.8)

In order to formulate the dynamics between the defenders and the attackers,

we first define some necessary quantities. First, we define

rangel,kad(t) =

√(
xk1(t)− yl1 (t;αl)

)2
+
(
xk2(t)− yl2 (t;αl)

)2
, (VI.9)
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which gives the range between the lth attacker and the kth defender at time t, given

a particular attacker trajectory. We also define

rangelHV U(t) =

√(
x0

1(t)− yl1 (t;αl)
)2

+
(
x0

2(t)− yl2 (t;αl)
)2
, (VI.10)

which gives the range between the lth attacker and the HVU at time t, given a

particular attacker trajectory. Next, we define

θl,kad (t) = tan−1

(
xk2(t)− yl2

(
t;αl

)
xk1(t)− yl1 (t;αl)

)
, (VI.11)

which gives the angle between the lth attacker and the kth defender at time t, given

a particular attacker trajectory. Finally, we define

θlHV U(t) = tan−1

(
x0

2(t)− yl2
(
t;αl

)
x0

1(t)− yl1 (t;αl)

)
, (VI.12)

which gives the angle between the lth attacker and the HVU at time t, given a par-

ticular attacker trajectory. Then, the dynamics of the lth attacker given a particular

realization of the random variable α are given by

ẏl1(t) = −wl1
K∑
k=1

cos θl,kad (t)[
rangel,kad(t)

]2 + wl2
cos θlHV U(t)[
rangelHV U(t)

]2 (VI.13)

ẏl2(t) = −wl1
K∑
k=1

sin θl,kad (t)[
rangel,kad(t)

]2 + wl2
sin θlHV U(t)[
rangelHV U(t)

]2 , (VI.14)

where wl1 and wl2 are user specified weights that define the relative importance of the

two components of the attacker dynamics. The component associated with wl1 is due

to the herding effects of the defenders. In a manner similar to the approach used in

Lu (2006), we assume that the lth attacker moves in a straight line away (hence the

minus sign in front of wl1) from the weighted sum of “influences” of the k defenders,

and that the lth attacker’s velocity is bounded by the inverse of the distance between

it and the kth defender squared. The component associated with wl2 is due to the

attacker’s desire to get close to the HVU in order to facilitate his attack. Again, we
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assume that the lth attacker moves in a straight line towards (hence the plus sign in

front of wl2) the HVU, and that the lth attacker’s velocity is bounded by the inverse

of the distance between it and the HVU squared.

One way that wl1 and wl2 could be specified would be to define a distance called

panicl that gives the range from the HVU that the lth attacker begins to worry about

being detected by the defenders. In this case wl1 and wl2 would be given by

wl1 =
panicl

rangelHV U
(VI.15)

wl2 =
rangelHV U
panicl

. (VI.16)
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VII. APPENDIX: MATHEMATICAL

BACKGROUND

Throughout this dissertation, we consider the Lipschitz continuity of functions

relative to the set H, and the differentiability of functions on the set H0, relative to

the set H as defined in Polak (1997). For the sake of completeness, we include the

pertinent definitions from pp. 652–656 of Polak (1997). We begin with the definitions

related to continuity.

Definition VII.1. Let V be a real normed space and let S be a convex subset of V .

(i) A function f : V → Rm is said to be continuous at a point x ∈ V , if, for every
δ > 0, there exists a ρ > 0 such that

‖f(x′)− f(x)‖ < δ,∀x′ ∈
◦
B(x, ρ), (VII.1)

where
◦
B(x, ρ) , {x′ ∈ Rn | ‖x′ − x‖ < ρ}. A function f : V → Rm is said to be

continuous (continuous on S) if it is continuous at all x ∈ V (x ∈ S).

(ii) A function f : V → Rm is said to be continuous, relative to S (S-continuous),
if, for every x ∈ S and for every δ > 0, there exists a ρ > 0 such that

‖f(x′)− f(x)‖ < δ,∀x′ ∈
◦
B(x, ρ) ∩ S. (VII.2)

Next we state definitions related to differentiability.

Definition VII.2. Let V be a real normed space.

(i) We will say that a continuous function f : V → Rm is Gateaux differentiable at
a point x∗ ∈ V , if there exists a bounded linear operator fx(x

∗) : V → Rm such
that, for every δx ∈ V ,

lim
λ↓0

‖f(x∗ + λδx)− f(x∗)− λfx(x∗)δx‖
λ

= 0. (VII.3)

We will call fx(x
∗) the Gateaux derivative of f(·) at x∗.

We will say that a continuous function f : V → Rm is Gateaux differentiable on
a subset S of V , if it is Gateaux differentiable at all x ∈ S.
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(ii) We will say that a continuous function f : V → Rm is Frechet differentiable at
a point x∗ ∈ V , if it is Gateaux differentiable at x∗, with Gateaux derivative
fx(x

∗), and, in addition, the Gateaux derivative has the property that

lim
δx→0

‖f(x∗ + δx)− f(x∗)− fx(x∗)(δx)‖
‖δx‖

= 0. (VII.4)

In this case, we will also call fx(x
∗) the Frechet derivative of f(·) at x∗.

We will say that a continuous function f : V → Rm is Frechet differentiable on
a subset S of V , if it is Frechet differentiable at all x ∈ S.

(iii) Let S ′ ⊂ S be two convex subsets of V . We will say that a continuous function
f : S → Rm is Gateaux differentiable, relative to S, (Gateaux S-differentiable)
at a point x∗ ∈ S ′, if there exists a bounded linear operator fx(x

∗) : V → Rm

such that, for every δx ∈ V such that x∗ + λ∗δx ∈ S, for some λ∗ > 0,

lim
λ↓0

‖f(x∗ + λδx)− f(x∗)− λfx(x∗)δx‖
λ

= 0. (VII.5)

We will call fx(x
∗) the Gateaux S-derivative of f(·) at x∗.

We will say that f(·) is Gateaux S-differentiable on S ′, if it is Gateaux S-
differentiable at all x ∈ S ′.

(iv) Let S ′ ⊂ S be two convex subsets of V . We will say that a continuous function
f : S → Rm is Frechet differentiable, relative to S, (S-differentiable) at a point
x∗ ∈ S ′, if it is Gateaux S-differentiable at x∗, with Gateaux S-derivative fx(x

∗),
and, in addition, the Gateaux S-derivative has the property that

lim
δx→0

x∗+δx∈S

‖f(x∗ + δx)− f(x∗)− fx(x∗)(δx)‖
‖δx‖

= 0. (VII.6)

In this case, we will also call fx(x
∗) the Frechet S-derivative of f(·) at x∗.

We will say that f(·) is S-differentiable on S ′, if it is Frechet S-differentiable at
all x ∈ S ′.

The next two paragraphs are a restatement of the beginning of Section 5.6.2

from Polak (1997), but are included here for the sake of completeness to provide a

detailed explanation of what it means for a function to be continuous relative to the

set H and Gateaux differentiable at η ∈ H0, relative to the set H.
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Based on Definition VII.1, we can now give a detailed explanation of what it

means for a function to be continuous relative to the set H. Let S be a convex subset

of H. Then, according to Definition VII.1, a function f : S → Rn is continuous

relative to H, at a point η ∈ S, if, for any sequence {ηi}∞i=0, with ηi ∈ H for all

i ∈ N, such that ηi → η, as i → ∞, f(ηi) → f(η), as i → ∞. It should be noted,

however, that if {ηi}∞i=0 is any arbitrary sequence converging to η, then it is possible

that ηi /∈ H for all i ∈ N. Then, we cannot claim that f(ηi) → f(η), as i → ∞,

and hence we cannot necessarily conclude that f(·) is continuous at η. To keep our

terminology as concise as possible, as in Definition VII.1, given S, a convex subset of

H, we will say that a function f : S → Rn is H-continuous when we mean that it is

continuous relative to H.

Similarly, based on Definition VII.2 we can give a detailed explanation of what

it means for a function to be Gateaux differentiable at η ∈ H0, relative to the set H.

We begin by noting that given any η ∈ H0 and any δη ∈ H∞,2, there always exists

a λ > 0 such that η + λδη ∈ H. Then it follows from Definition VII.2(iii) that a

function f : H→ Rn is Gateaux differentiable at η ∈ H0, relative to H, if there exists

a continuous linear map Df(η; ·) from H∞,2 into Rn, such that for all δη ∈ H∞,2,

lim
λ↓0

f(η + λδη)− f(η)− λDf(η; δη)

λ
= 0. (VII.7)

As a result, if f : H→ Rn is Gateaux differentiable at η ∈ H0, relative to H, it is also

Gateaux differentiable at η. It also follows from Definition VII.2(iv) that f : H→ Rn

is Frechet differentiable relative to H (Frechet H-differentiable) at η ∈ H0, if it is

Gateaux differentiable at η and the Gateaux differential Df(η; ·) has the property

that

lim
η′∈H

‖η′−η‖H2
→0

‖f(η′)− f(η)−Df(η; η′ − η)‖
‖η′ − η‖H2

= 0. (VII.8)

Then by definition, a function f : H → Rn is Gateaux/Frechet H-differentiable on

H0, if it is Gateaux/Frechet H-differentiable at every η ∈ H0.
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